Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

A Survey of Recent Advances in
SAT-Based Formal Verification

Mukul R Prasad?!, Armin Biere 2, Aarti Gupta ®

1 Fujitsu Labs. of America, Sunnyvale, CA, USA
2 Johannes Kepler University, Linz, Austria
3 NEC Labs. America, Princeton, NJ, USA

The date of receipt and acceptance will be inserted by the editor

Abstract Dramatic improvements in SAT solver technology SAT solver technology over the past decade have led to the
over the last decade, and the growing need for more effidevelopment of several powerful SAT solvers [45,71,77,105].
cient and scalable verification solutions have fueled researckerification methods based on these solvers have been shown
in verification methods based on SAT solvers. This papetto push the envelope of functional verification in terms of
presents a survey of the latest developments in SAT-basebloth capacity and efficiency, as reported in several academic
formal verification, including incomplete methods such asand industrial case studies [4,16,19,31]. This has fueled fur-
bounded model checking, and complete methods for modether interest and intense research activity in the area of SAT-
checking. We focus on how the surveyed techniques formubased verification.
late the verification problem as a SAT problem, and how they This paper surveys the recent developments in SAT-based
exploit crucial aspects of a SAT solver, such as applicationformal verification techniques and methodologies. The work
specific heuristics and conflict-driven learning. Finally, we surveyed falls primarily in the category of property verifica-
summarize the noteworthy achievements in this area so fation or model checking methods since such has been the fo-
and note the major challenges in making this technology moreus of most recent works on SAT-based verification. For other
pervasive in industrial design verification flows. verification applications of SAT methods, such as combina-
tional equivalence checking, the interested reader is referred
to [47,68].
o] Additionally, there is an interesting body of work based
Key words: Verification, SAT, Model Checking, QBF, ATPG oy applying SAT to richer types of specifications and log-
ics, which, due to lack of space can not be covered in this
short survey. Here is a list of recent relevant topics, which
may serve as a starting point for the interested reader: quanti-
fier free fragments of first order logic [9,87,100], Presburger
Functional verification of digital hardware designs has be-Arithmetic [97], monadic second order logic [6], object ori-
come one of the most expensive and time-consuming comented software specifications [60].
ponents of the current product development cycle. Symbolic
model checking based on BDDs [22,72] have come a Iongl 10 izati
way since their introduction more than a decade ago. How-"" rganization
ever, they are still incapable of handling the largest problems
encountered in current industrial practice. Reduction in fea-The survey is organized as follows. Section 2 briefly reviews
ture size coupled with the recent move towards IP-based dehe SAT problem, basic SAT algorithms and advanced fea-
sign has led to dramatic increases in the size and complexures of modern SAT solvers, and model checking. Section 3
ity of systems that are being designed, thereby posing newliscusses work obounded model checking (BM@)clud-
challenges for functional verification methods. Hence thereing ways of strengthening SAT-based BMC with BDD-based
is a growing need to investigate and develop more robust andnalysis and several industrial case studies comparing SAT-
scalable verification methods based on novel and alternativBMC with traditional BDD-based symbolic model checking.
technologies. Section 4 reviews techniques that implement complete meth-
Verification methods based on SAT solvers have recentlyods for model checking based on state-space search, inductive
emerged as a promising solution. Dramatic improvements imeasoning and abstraction-refinement.

1 Introduction

2 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

Recently there have been some successful attempts at us- ~ Sat-solve)
ing sequential ATPG tools for model checking. These are sur- if preproces§ = CONFLICTthen
veyed in Section 5. Another recent development has been the return UNSAT;
use ofQuantified Boolean Formulae (QBBplvers, a gen- while TRUE do
eralization of SAT, to solve model checking problems. The if not decide-next-brandhthen
state-of-the-art in QBF solving and its applications to verifi- return SAT:
cation are discussed in Section 6. We conclude the paper in while deduc€) = CONFLICT do

Section 7 with a summary of the major achievements in SAT-
based verification to date and some thoughts on the future
prospects and challenges for SAT-based verification.

blevel« analyze-confliq);
if blevel=0then

return UNSAT;
backtrack bleve);

2 Background dong
done

2.1 The Boolean Satisfiability Problem Figure 1. DPLL-based SAT Solver

The Boolean Satisfiability (SAT) problem is a well-known
constraint satisfaction problem, with many applications in the

fields of VLSI Computer-Aided Design and Artificial Intelli- ppLL. They have their strength on random SAT instances,
gence. Given a propositional formuta the Boolean Satis- byt in practice do not work well on structured instances ob-
fiability problem posed o is to determine whether there tained from real verification problems.

exists a variable assignment under whichvaluates to true. The basic skeleton of DPLL-based SAT solvers is shown

Sucrt1 fan assig dnmgnt, ";I It demitsf,_ lsblcall)etgaﬁlsfylng _assgg- in Figure 1, adapted from the GRASP work [71]. The initial
[neg or ¢t‘iir;. gl ISTEa eSAﬁ_a IS Igl €t Erwseq; Isbsall\lP step consists of some preprocessing, during which it may be
0 beunsatisiable 1he problem IS known to b€ NF- - yiseovered that the formula is unsatisfiable. The outer loop

Complete [42]. However, in practice, there has been tremenétarts by choosing an unassigned variable, and a value to as-

dou; progressin SAT solvers technolqu over t.he years, SurTEign to it (decide-next-branghlf no such variable exists,
marized in a recent survey [107]. Earlier work in the contexta solution has been found. Otherwise, the variable assign-

of trll/TorterSnAE)rrowlng 'S cov%red- n [?.3]' N | Form (CNF ments deducible from this decision are made (using dgduce
0s tat S0 }/(ta;s uBse Ionjupc |vel c:rmCaNF rtrr? (f) | through a procedure callégbolean Constraint Propagation

representa '03 ot the boolean orr’rfwu Ia. n ' he lormu,a(BCP) It typically consists of iterative application of thmit

'S. r.epre'sente 'as a conjunct.|0n 0 . ¢ ause§, eac .C ause IScgy ise rule which is invoked whenever a clause becomes a

(j|31unct|on of Ilfcerals, and a literal is a variable (_)r _'ts nega- njt clausej.e., all but one of its literals are false and the re-

tion. Note that in order for the formula to be satisfied, eaChmaining literal is unassigned. According to the rule, the last

_cl?uscle must allls,? bgt;atlsflem.,sivglgatf tto tru?. There ex- unassigned literal ignpliedto be true — this avoids the search
ist polynomial algorithmsg.g, [81,98]) to transform an ar- path where the last literal is also false, since such a path can-

bitrary propositional formula into aatisfiability equivalent not lead to a solution. Aonflict occurs when a variable is
CNF formula that is satisfiable if and only if the original for- implied to be true as well as false. If no conflict is discov-
mL:jlad'S satlsﬂat_)I?. s:_mllarly a I|300I(éa,\rl1Fc;rcmt Inay _be eQ'ered during BCP, then the outer loop is repeated, by choosing
coded as a satisfia ||ty.equwa ent ormula using t ®the next variable for making a decision. However, if a con-
method Of. [65.]' AIterpanver, for SAT applications ansing fict does occurpacktrackingis performed within an inner
from the circuit domain, the SAT solver may be modified to loop in order to undo some decisions and their implications.

work directly on the Boolean circuit representation. If all decisions need to be undorieey, the backtracking level
blevelis 0), the formula is declared unsatisfiable since the
2.2 SAT Solvers entire search space has been exhausted.

The original DPLL algorithm used chronological back-
Most modern SAT solvers are based on bavis-Putnam- tracking,i.e., it would backtrack up to the most recent deci-
Logemann-Loveland (DPLL) algorithi82,33], which per- sion, for which the other value of the variable had not been
forms a branching search with backtracking. The DPLL al-tried. However, modern SAT solvers usanflict analysigech-
gorithm is sound and completeg,, it finds a solution if and niques (shown as (analyze-confliat the figure), to analyze
only if the formula is satisfiable. In this section, we summa-the reasons for a conflict. Conflict analysis is used to per-
rize the main features of modern DPLL-based SAT solversform conflict-driven learningand conflict-driven backtrack-
This provides the context for enhancements targeted at vering, which were incorporated independently in GRASP [71]
fication applications, discussed in the rest of the paper. and rel-sat [11]. Conflict-driven learning consists of adding
Probabilistic SAT solvers, including WALKSAT [85] and conflict clause$o the formula, in order to avoid the same con-
GSAT [86], are based on stochastic local search instead dfiict in the future. Conflict-driven backtracking allows non-

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 3

sion engine (heuristics for choosing decision variables and

Implication Graph values), deduction engine (data structures and heuristics for

Clauses: X . performing BCP and detecting conflicts), diagnosis engine
CL:x1'+x2 +x6 (heuristics for conflict-driven learning). Some of these are de-

C2: X2 + X3+ X7’ X
o X34 B scribed in the remainder of this section.

C4: x1’+ x6’+ x5’

C5: x6’+ X7+ x8’+ X9’
C6: x5 + x9 + x10
C7: x9 +x10’

2.2.1 CNF-based SAT Solvers

Conflicting An interesting property of CNF representations was first ex-
Nodes ploited by Zhang in the SATO SAT solver [105], to improve
the performance of BCP. It proposed the use of head and tail
pointers to point to non-false literals in the list representa-
tion of a clause, and maintained thong invariantthat all
literals before the head pointer, and all literals after the tail
pointer, are false. Clearly, detection of a unit clause during
BCP becomes easie., when the head and tail pointers co-
incide on an unassigned literal. The main advantage is that
the clause status is updatedly when either of the head/tail
literals is assigned a false value during BCP. In particular,

) o o this eliminates an update when any of the other literals in the
chronological backtracking,e. up to the closest decision ¢|ayse is assigned a value. When the head/tail literal is as-

which caused the conflict. These techniques greatly improvgjgneq a false value during BCP, the associated pointer needs
the performance of the SAT solver on structured problems. e moved to another non-false literal if it exists. This is fa-
The essential component of conflict analysis israpli- cilitated by the strong invariant. However, during backtrack-
cation graph[71,106], which captures the current state of jng, the head/tail pointers may need to be moved back again,
the SAT solver. A small example of an implication graph in order to maintain the strong invariant.
is shown in Figure 2, where the original SAT problem con- A different tradeoff was proposed by Moskewietzal. in
sists of clause€1— C7, as shown on the left. In an impli- the Chaff SAT solver [77]. Its BCP scheme, knowrtas lit-
cation graph, nodes represent assignments to variables. Fgfa| watching with lazy updatés also based on tracking only
example, nodel represents1= 1, and nodeS' represents twp literals per clause during BCP. However, Chaff maintains
x5=0. a weak invariant whereby the two watched literals are re-
Edges in an implication graph represent clauses, whichyuired to be non-false, but there is no ordering requirement
cause implications due to source nodes on sink nodes. Fatith respect to other false literals. Again, detection of a unit
example, whenxl=1 andx2= 0, clauseC1 causes an im- clause during BCP is easily performed by checking whether
plication x6 = 1. This is shown as two edges — between both watched pointers coincide, and whether clause updates
andx6, and betweenx2 andx6 — both marked with clause on assignment to other literals are eliminated. Note that due to
C1 as shown. Nodes with no incoming edges, suclxBs the weaker invariant, more work than SATO may be required
denote decision assignments (shown as white nodes in thguring BCP, to search for a non-false literal when one of the
figure). A conflictis indicated when there are two nodes in two watched literals is assigned a false value. However, the
the graph with opposite values assigned to the same variveaker invariant ensures that no additional work is required
able. In this example, a conflict is indicated by nodd® during backtracking. This tradeoff has been shown to work
andx10, which are called conflicting nodes. Conflict anal- better in practice.
ysis takes place by following back the edges from the con- Chaff also proposed a useful decision heuristic that prior-
flicting nodes, up to any edge cutset which separates the coritizes the literals that appear in recent conflict clauses. Recall
flicting nodes from the decision nodes. An example cutset ighat conflict clauses are added due to conflict-driven learning,
shown by the dashed line in the figure. A conflict clause iswhich is very beneficial for SAT solvers on structured prob-
derived from the variables feeding into the chosen cutset tdems. This was taken a step further by Goldberg and Novikov
capture the reasons for the conflict. It also corresponds to & the BerkMin SAT solver [45], which prioritizes all liter-
resolution on all the clauses associated with the edges traals involved in the conflict analysis, and not just those that
versed up to the cutset. In this example, conflict clab8¢é appear in the conflict clause. The performance improvement
derived as shown, corresponding to the observation that a pagtue to these decision heuristics is additional testament to the
tial assignmentx1=1,x2=0,x3=0,x8= 1) always leads importance of conflict-driven learning in practice.
to a conflict. For conflict-driven learning, the derived clause More recently, additional information recorded during con-
C8is added to the clause database in order to avoid the sanffict analysis has been used very effectively to provide a proof
conflict in the future. when a formula is determined to be unsatisfiable by the SAT
Many other advances have been made in these basic corselver. This proof can be independently checked to verify
ponents which comprise the DPLL-based SAT solver — decithe SAT solver itself [46,109]. These techniques can also be

Conflict Clause C8:
x1'+ X2 + x3 + x8’

Due to conflict
(x10, x10%)

Figure 2. Conflict Analysis using an Implication Graph

4 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

easily adapted to identify a subset of clauses from the origiconflict-driven learning, which can potentially improve its
nal problem, called thansatisfiable cor¢l09, 75], such that performance on larger problems.

these clauses are sufficient for implying unsatisfiability. The
use of such techniques in verification applications are de- .
scribed in more detail in Section 4. 2.3 Model Checking

With the introduction obounded model checkifjg5] it be-
came clear that SAT can be used fapdel checkindg27].
One can even argue, that currently one of the main driving
forces behind SAT research is its application to model check-
ing. The purpose of this section is to give a short overview on
the history and terminology of model checking. More details

2.2.2 Circuit-based SAT Solvers

SAT has many applications in the logic circuit domain, such
as automatic test pattern generation (ATPG), verification, tim
ing analysisgetc. The Boolean reasoning problem is typically
derived from the circuit structure. This has also led to interestCan be found in the text book [28] or the survey [30]
in circuit-based SAT solvers [38,44,64]. These work directly The target of model checking is the verification of se-
on the circuit structure, and use circuit specific heuristics to . . ; :

. : S quential properties of dynamic systems. A dynamic system
guide the search. In general, attempts to include circuit struchas a state component which changes over time. Typical sys-

ture information |nt(_) C_l_lF-based SAT solvers have been UNtems are sequential circuits, which contain delay elements,
successful due to significant overhead.

. . . such as flip-flops and latches. Verification of sequential cir-
Among verification applications, recentlyiiklmannet

L 1641 f q SAT techni ; imol i cuits is also the main application area of this survey.
al. [64] focused on Al techniques for a simple, uniform Model checking, in the first place, is only applicable to
gate-level representation of circuits, and their integration Wlthf

ther ful techni like BDD sweenina and dvnamic cir inite systems. However, if suitabfmite abstractionsan be
other usetul techniques fike sweeping a ynamic ¢ found, then some classes of infinite systems can be checked

cuit transformation. Circuit-based BCP is performed by a S35 well. Applications of infinite model checking are real-time

gle table lookup per gate, in contrast to CNF-based uF)dategystems modeled as timed automata [3], or even system soft-

g)égme:;t'ﬂy rt]hre(i' e\?vui\//arletnht cr:Iaiusnes. ;If'hlsti\;m\[/)vrovctes threware [8]. Further, model checking has also been applied suc-
periormance. HOWEVer, there 1S no etiective way 1o pe ‘cessfully in the context of telecommunication protocols and
form conflict-driven learning. The bottleneck is that conflict

clauses correspond to lariR-treecircuits cac_he coherence protocols. It ml_Jst be noteq, that _SAT has
P : mainly been used for model checking sequential circuits. How-
ever, it is apparent that the verification of more general sys-
2.2.3 Hybrid SAT Solvers tems can also benefit from SAT technology.
Sequential properties are usually represented in tempo-
More recently, there has been an effort by Gaiail.[41] to ral logic [36]. Formulas of temporal logic try to express sys-
combine the relative benefits of CNF-based and circuit-basetem behavior over time. There are various variants of tem-
SAT solvers. In particular, their hybrid SAT solver incorpo- poral logic, such a&inear Temporal Logic (LTLpr Com-
rates efficient circuit-based BCP technigues, along with conputation Tree Logic (CTL)which usually require dedicated
flict analysis techniques of CNF-based solvers. The originaklgorithms. In this paper we focus @imple safety proper-
circuit problem is represented as a simple gate-level netlistties also often called invariants, written in CTL A& p. This
while the learned conflict clauses are represented in CNFormula specifies, that for all executions paths, globally in all
The BCP engine consists of table lookups for the gates, and states along the path, the propepyolds. Alternatively, it
Chaff-style two-literal watching scheme for conflict clauses. states the property thatp, read asnot p which could be
Note that since the clauses for a simple gate are short clauss®me catastrophic system state, can not be reached. Note that
(3-literals or less), a single table lookup is cheaper than mulfor finite systems, many practically relevant properties can be
tiple clause updates. On the other hand, since conflict clausdsanslated into simple safety properties [84].
tend to be much longer, a two-literal watching scheme (which Originally [27] model checking used an explicit represen-
avoids multiple updates) is more useful than multiple tabletation of states. A typical implementation [55] of this type
lookups for its many literals. This enables consistent speedupsf explicit model checkingtores individual states in a large
in the BCP performance. Their hybrid representation of thehash table, memorizing the states reached during a depth first
Boolean problem allows exploitation of both circuit-based traversal of the state space. Since the number of states of even
and CNF-based decision heuristics. small systems can be very largeg, a 128 bit shift register
Another effort by Luet al. [69] used these ideas along has 2?8states, this method does not scale, in particular for se-
with additional conflict-driven learning, in order to improve quential circuits. One solution to this so callgdte explosion
the SAT solver performance. The idea is to use cheaper methproblemis symbolic model checkin@2], which operates on
ods (such as simulation) to find candidate pairs of co-relatedets of states instead of individual states and represents sets
signals in the given circuit. Then the inequivalence of theof states symbolically in a compact form.
co-related signals is added as a constraint to the SAT prob- In the past, Binary Decision Diagrams (BDDs) [21] and
lem. Since this constraint is likely to be conflicting, it pro- variants have frequently been used as representation for sets
vides additional opportunities for the SAT solver to perform of states. They also allow efficient computation of Boolean

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 5

model-check ... (I, T, B) model-checK, 4 varg(l. T. G)

<=0, =1; & =“all states”;Sp = G;
while S # Sy do while S # Sp do

S =S =%

if BN # 0then S = SNAX(S);

return “found error trace to bad states”; dong

SN =S UImg(S); if | = & then return “only good states reachable”;

done else return“found error trace to bad states”;

return “no bad state reachable”; Figure 4. Backward greatest fixpoint algorithm for safety properties

Figure 3. Forward least fixpoint algorithm for safety properties

as defined in Section 4.2. In this case the backward fixpoint

operations. In particular BDDs allow an efficient implemen- computation terminates after oReesimgcomputation. A gen-
tation of the image operatioimg, which lies at the core of eral strategy is to try backward and forward traversal in par-
the breadth first search in symbolic model checking. It calcu-allel.

lates the states reachable in one step via the transition rela- Both symbolic model checking algorithms presented so
tion T from the current set of stat&s, by implicitly conjoin- far can be interpreted as calculating a least fixpoint [22]. Dual
ing the BDD representin§c with the BDD representing formulations exist for greatest fix points. For backward traver-
and projecting the result onto the next state varia®léasfter ~ sal, the CTL operatoAX (also known as the weakest pre
eliminating the current state variabl¥sand primary input ~ condition operatowp) replaces’relmg

variablesw). AX (X) = VY,W. T(X,Y,W) — &(Y)

Img(Y) = IX,W. S(X) AT(X,Y,W))\t calculates the set of previous stafesthat lead to a state in

In the context of circuits, we additionally assume that thetn® current set of state%, independent of the values at the

transition relation is deterministic. As shown above, it mayPrimary inputs. A backward model checking algorithm for

however depend on primary inputs, encoded by a vestor simple safety properties, based on greatest fix point calcula-
ion and on théAX operator, can be formulated as in Figure 4.

of Boolean variables, which also need to be quantified durin%‘_’| X , .
image computation. In the terminology of program verifica- irel,dG denotes the set gfood states.e., the states in which
p holds.

tion, Img calculates the strongest post condition of a given) .
SAT technology can be used for implementing all parts of

predicate.) o .
these algorithms. One option is to unroll the loop in model-

A basic algorithm for symbolic model checking simple -) o
safety properties can then be formulated as in Figure 3. iEheChywarq ONlY a finite number of times, omitting the ter-

represents sets of states symbolically, and searches in breadfi{nation checkls. ;h'i{ n eﬁsencg, 'Sft:‘]e main idea behind
first order from the initial states to the bad states.Bbe the ~ Pounded model checking, the topic of the next section. We
set of bad states, in which does not hold, and the set of will come back to backward traversal calculating greatest fix

initial states. points in Section 4.1.2.

This forward model checkinglgorithm, starts at the ini-
tial states and searches forward along the transition relatio
In the literature one can also filmhckward model checking
algorithms. They rely on a dual operation to tineg opera-
tion Prelmg or equivalently the CTL operatdX. It calcu- ~ Bounded Model Checking based on SAT methods was in-

lates the set of previous stat&sthat may reach the given set troduced by Biereet al. in [14,15,26] and is rapidly gain-

3 Bounded Model Checking

of current state& in one step: ing popularity as a complementary technique to BDD-based
symbolic model checking. Given a temporal logic property
PrelmgX) = 3Y,W. &(Y) AT(X,Y,W) P to be verified on a finite transition systevh the essential

idea is to search for counter-examplegti the space of all
A backward model checkirgjgorithm can be obtained from executions oM whose length is bounded by some intelger
the forward algorithm by, in essence, exchangihwith | The problem is formulated by constructing the following
andImg with Prelmg In practice, forward traversal usually propositional formula:
is much faster [58,57,54,17]. The reason may be, that un-
reachable states do not have to be visited and BDDs behave K K
much better. However, not all temporal properties, for in- ¢ =1 A_/\Ti A (=P) @)
stanceEXp A EXq or AG EXp, can be handled witthmg =0
computation only. In certain cases backward traversal is betwhere| is the characteristic function for the set of initial
ter. For instance, if the properfy is an inductive invariant, states ofM, T; is the characteristic function of the transition

k—1

6 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

only from this sub-circuit. In our experience the BCOI reduc-
b tion is cheap and easy to apply and can occasionally provide
£ " significant improvements over the simple COI reduction.
@ﬁ T, T, cee —» T, ﬁ Ganaiet al.[39] use binary AND-INVERTER graphs [64]
to represent the transition relation of the system as well as
Figure 5. Bounded Model Checking the unrolled transition relation used for the BMC problem

(Figure 5). The graph is compressed, as it is built, by using

an efficient functional hashing scheme across two levels of

logic, as well as term re-writing techniques. The CNF for the
relation ofM for time stepi. Thus, the formuld AAX.JTi BMC problem is generated from this compressed representa-
precisely represents the set of all execution#/obf length tion. SAT results from earlier BMC runs are used to set ap-
k or less, starting with a legal initial state’X is a formula propriateP nodes (Figure 5) to 0 and then re-hash the circuit
representing the condition that is violated by a bounded graph to obtain further compression. Such techniques work
execution oM of lengthk or less. HencepX is satisfiable if extremely well in practice especially if the logic level circuit
and only if there exists an executiondfof lengthk or less used for the verification has been generated through a quick

that violates property. ¥ is typically translated to CNF and on-the-fly synthesis from an RTL description.
solved by a conventional SAT solver.

The formula—~P* may be used to express both safety and
liveness properties. Liveness properties of the fédap are

checked by having-?* represent a loop within a bounded)) _)
execution of length at most such thatp is violated on each Variable ordering has long been recognized as a key determi-

state in the loop. However, the more common application off@nt of the performance of SAT solvers. The earliest works
BMC is for the purpose of checking safety properties of theOn SAT-BMC were based on SAT solvers such as GRASP

form AGp (p is some propositional expression). In this case@nd SATO which used variable ordering heusristics such as

3.2 Decision Variable Ordering of the SAT solver

expression (2) reduces to: theDLIS heuristic [70]. Strichman [95] proposed a static vari-
able ordering scheme specifically targeted for BMC problems
. k=1 k which improved upon the default DLIS ordering. The static
" =1A /\ Tin (\/ —R) ®3) order was generated from a BFS-like traversal of the unrolled
=0 =0 circuit graph used for BMC.
whereP is the expressiop in time stepi. Thus, this formula However, recent results [88] show that the conflict-driven

can be satisfied if and only if for sone (i < k) there exists ~ variable ordering heuristics used in modern SAT solvers,(

a reachable state in time stefn which p is violated. Fig- the VSIDS heuristic in zchaff [77]) outperform afyly static

ure 5 shows a circuit representation of this equation, wherd8MC-specific variable ordering scheme, such as the one pro-
the blockP denotes a combinational circuit block computing posed in [95]. A slight tuning of these heuristics for the BMC

—P as a function of the state variables of time step problem [88] can further enhance the performance. On the
A typical application of BMC consists of iteratively exe- other hand, BMC tools using circuit-based SAT solvers,
cuting the above formulation for increasing valuekaintil [41,59,64] essentially use some variant of gaontier jus-

either a property violation is discovered or some user specitification heuristic popularly used in sequential ATPG tools.
fied limit onk or the computing resources (memory, runtime) ~ While the above heuristics work fairly well for a SAT
is exceeded. solver in a BMC setting, they do not specifically exploit any
Recent research has improved upon both the technologley aspects of the BMC problem to customize and target the
and methodology of the basic BMC method described abové&AT search for BMC. Since the SAT solver’s runtime dom-
in several ways. These improvements are discussed below. inates the overall performance of the BMC tool, this topic
could be an interesting avenue for future research.

3.1 Structural Pruning during CNF Generation
3.3 Addition of Constraints to the SAT problem

Many techniques use some kind of structural processing to
generate a more compact CNF for the BMC problem, withThe technique of learningonflict clausesluring search has
the hope that the resulting SAT problem is easier for the SATdramatically enhanced the efficacy of modern SAT solvers.
solver to solve. Motivated by this, several other specialized static and dy-

The bounded cone of influence (BCO@8&duction [16]is namic learning techniques have been developed for the BMC
an improvement on the classiaaine of influence (COle- problem. The learned constraints can be added as CNF clauses
duction used in traditional model checking. The intuition is to the SAT problem being solved, with the hope of speeding
that over a bounded time interval we need not consider everyp the solution process.
state variable in the classical COIl at every time step. Specifi- The technique otonstraints sharind96] proposed by
cally, in Figure 5, the BCOI reduction would extract the tran- Strichman is based on the observation that since BMC is an
sitive fanin cone of the gatg and construct the BMC-CNF iterative process whereby the problem is repeatedly solved

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 7

3.4 Methodology Improvements to BMC
o>
T Although, BMC is by its intent an incomplete, bug-finding
@ﬁ h . R method rather than a complete verification method, a given

property can be certified to be true if no counter-examples
@ @ s @ are found through BMC, upto thgequential deptfof the
M M circuit[15]. The sequential depth of a circuit is length of the
! longestof the shortest-paths from the initial state(s) to other
Figure 6. Improving BMC Using Reachability Over-approximation reachable states of the system.

There have been a few attempts at computing or estimat-
ing the sequential depth of a circuit, to use as a target depth
for BMC. Yenet al.[104] proposed a heuristic method based
on a sampling of the state-space through random simulation.
However, since the method can report an under-approximation
by the SAT solver in one run can potentially be used for OF N over-approximation .Of the true sequential depth it does

. . .not provide a viable solution. Mneimneh and Sakallah [76]

subsequent runs instead of having to re-learn them. Speu? S
; . . . ormulate the problem as a logical inference problem on Quan-
ically, any conflict clause deriveexclusivelyfrom the sub- . X

o k-1 .. tified Boolean formulas (QBF) (see also Section 6) and present
formula®y =1 Aj—g Ti can be re-used.¢, added a-priori ", o oo ocedure Tor solving the generated QBF. Un-
tothe CNF) in future BMC runs with higher valueslofThis fortunatel th?s technigue althou gh re?:ise does not .oﬁ‘er
technique is a specific instance ioicremental satifiability Y d gh p ’

technigues, with applications in BMC [92] and other generala scalable solution. Baumgartnetral. [10] present a struc-

classes of SAT problems [61,102]. Generally, this techniquetural approach based on traversing the circuit netlist to iden-

has been found (0 offer speed-ups of uplo@ more with X ORI e e above
negligible overhead. p q pth. Desp

tempts, the problem of efficiently computing or tightly over-

Arelated technique callezbnstraints replicatiofi95] first approximating the sequential depth of industrial size, arbi-
identifies conflict clauses, derived from the sub-formula trary sequential circuits largely remains an open problem.
AT alone, and creates new clauses by replacing literals of It is well known that different propositional encodings of
¢ by their time-frame shifted versions, which are then addedhe same problem can result in dramatically different run-
a priori to CNFs of subsequent BMC runs. This technique istimes on a given SAT solver. The approachBifiary Time-
not very effective in practice, mainly due to the large over- frame Expansioproposed by Fallah [37] provides a different

head caused by addition of too many replicated clauses. propositional encoding of the check for violation of the prop-
erty in various time-frames of an unrolled circuit. The pro-

Recent work by Guptat al. [49] proposed learning con- posed encoding has been demonstrated to improve the SAT
flict clauses from BDDs, and adding them dynamically to solver runtimes over the traditional formulation of Eg. 2 pro-
the problem during the SAT search. The learned clauses conided the BMC instance is sufficiently deep (typicaky>
respond to paths to th® terminal in a BDD representa- 100).
tion, denoting unsatisfiable assignments on the path variables.

These BDDS are createq or!—the_—fly for heuristically_selecte%_s Industrial Application of BMC

small regions i(e., sub-circuits) in the unrolled design for
BMC. They proposed several heuristics to keep the overhead

low, while increasing the usefulness of the added clauses, angeveral successful attempts at applying SAT-based BMC tech-

demonstrated significant speedups in BMC performance. nology to industrial problems have been reported over the
past few years. The original proponents of BMC reported a

Another technique that draws upon BDD technology iscase study [16] where they applied BMC based on the SAT
the work of Cabodet al.[23]. The basic idea is to use BDD- solvers SATO [105] and GRASP [71] to verify safety prop-
based approximate reachability analysiguicklycompute a erties on 5 control units from thieowerPC M microproces-
succinctand coarse over-approximatid®’ of the reachable sor. BMC was found to significantly outperform the BDD-
state-space of a design. The BDD representing the charactepased CMU SMV model checker for several of the bench-
istic function ofR* is then asserted as constraints on the tran-marks. Bjesseet al. [19] reported a significant increase in
sition boundary between each successive pair of time-framelkug-finding speed and efficiency by their application of SAT-
i,i+1, as shown in Figure 6. The BDDs are converted to CNFBMC (based on GRASP and CAPTAIN PROVE [90] SAT
constraints which are conjoined with the BMC formulation of solvers), to check safety properties in the memory sub-system
Equation 2. This technique does indeed have an overhead arad the Alpha microprocessor.
is therefore useful primarily for larger, more difficult BMC A recent comprehensive analysis with respect to the per-
problems. In such cases speed-ups of upto an order of magermance and capacity of BMC is presented in [31]. The au-
nitude have been observed. thors compare Intel's BDD-based model checkerecast

1 s

for increasing values of the boutkgconflict clauses learned

8 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

(adapted for BMC) with a SAT-based BMC todlhunderon ~ model checking. Here, the crucial non-trivial operation is quan-
several benchmarks taken from Intel’s Pentium 4 processotifier elimination, which converts a QBF to a propositional
Their evaluation yields an interesting tie between the perforBoolean formula. This is shown below for the image opera-
mance ofuntunedThunder anduned Forecast. They con- tion, which forms the computational core of symbolic meth-
clude that the real productivity gains from SAT-based BMC ods for forward model checking, as explained in Section 2.3.
are obtained by obviating the need for user ingenuity and tun-

ing effort that would be needed to obtaircamparableper- Su(Y) = IXW, Z. S(X) AT(X,Y,W,Z))
formance from a BDD-based BMC. They also report succes$y this equation, the variable se¥ Y, W, Z, denote the

in using SAT-based BMC on large benchmarks, that are wellyresent state, next state, input, and internal (needed for a CNF
beyond the capacity of BDD-based tools. representation) variables, respectively; 8&d<c, andT de-

A more recent study [4] compares the performance Ofyote the next states, the current states, and the transition rela-
BDD-based, SAT-based and explicit state BMC on a widetjon, respectively.

variety of industrial property checking benchmarks includ-

ing both safety and liveness properties on hardware and softy 1 1 combination of SAT with Decision Diagrams
ware designs. Interestingly, they conclude that SAT-BMC is

most effective at finding bugs at shallow deptks30) while Apdullaet al. [1] formulate the checks for property satisfac-
BDD-based methods should be the method of choice for findtjon and fixpoints as SAT problems, to be solved by standard
ing deep counter-examples. They also find that explicit-statesAT solvers. The SAT problems comprise combinations of
BMC based on random simulation can give comparable performulasS,, representing sets of states. These are obtained
formance to SAT-BMC in finding shallow, easier bugs for by using rewriting rules for eliminating the existential quanti-
safety properties. fier in the image/pre-image operations (shown in Equation 4).
The general understanding and consensus in the commurhe most effective rule is ainlining rule, which substitutes

nity is that SAT-BMC tools require minimal tuning effortand an expression for a variable to be quantified; while the most
work particularly well on large designs where bugs need toexpensive is rewriting the existential quantification as a dis-
be searched at shallow to medium depths. In other instancesiiinction, which can result in a size blowup. They &luced
may be possibleo extract comparable or better performance Boolean Circuits (RBCsip represent the Boolean formulas,
from BDD-based model checkers or other algorithms. which can be exponentially more succinct than BDDs, but

are semi-canonical. A similar effort was made by Williaets

al. [103] to use SAT solvers for CTL model checking. They
4 SAT-based Unbounded Model Checking too used a substitution rule very effectively for elimination of

the existential quantifier. They us@&wbolean Expression Di-

In this section we describe verification efforts that have useddrams (BEDs]S], which are closely related to RBCs, for
SAT solvers for unbounded symbolic reachability analysis,'éPresentation of the Boolean formulas,. In addition to using
i.e, methods that can prove the correctness of a property ofitandard SAT solvers to check satisfiability of BEDs, they
a design as well as find counter-examples for failing prOp_also used the conversion of BEDs to standard BDDs. Since

erties. The method may or may not be complete. The surthis ponversion can blow up in practice, they used various
veyed methods fall into three categories. The first set of techl€Uristics to reduce the size of BEDs. _
niques have their roots in BDD-based symbolic state space A differentapproach was taken by Guetzl.[52], which
search where the use of BDDs has been partially or comiNtégrates BDD-based techniques tightly into the SAT deci-
pletely replaced with SAT solvers. The second category com$ion procedure. They represent the transition relafiom
prises methods based on inductive reasoning. Inductive tectZNF, and the set of reachable stafzsas BDDs. For im-
niques are sound but usually incomplete in that they may noft9& computation, quantifier elimination is performed by us-
be able to prove every correct property. The third category of"d SAT techniques to enumerate all solutions to the CNF
methods are abstraction-refinement frameworks, where SAT'mula, and by projecting each solution on the set of im-
based BMC is used primarily for abstraction or refinement,29€ variablesY). The sgarch for so_lutlons is also constrained
and is supplemented by other techniques for obtaining proof8Y the BDD for S, using a technique calleBDD Bound-

on smaller abstract models. These frameworks also provid!9: Whereby any partial solution in SAT which is inconsis-
completeness, and offer better scalability due to effective usé&nt with the BDD is regarded as a conflict. This technique
of abstraction. In principle, completeness can also be achieved &/S0 used effectively to avoid repeating image set solutions

by making the transition from SAT to QBF as is explained in Py bounding against the currei. They also generate BDD-
Section 6. based subproblems on-the-fly, under a partially explored path

in SAT. Though their procedure can be used to perform cube

enumeration in SAT alone, the use of BDD subproblems is
4.1 SAT-based State Space Search highly beneficial in handling large designs. This image com-

putation procedure was enhanced in [51] by adding circuit
Due to the success of SAT solvers in bounded model checkstructure information to the CNF formula, in order to dynam-
ing, there has been growing interest in their usasfdvounded ically detect and remove redundant clauses. Partition-based

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 9

SAT decision heuristics [53] were used to further improve itsuse circuit cofactoring after each enumeration to capture a

performance. larger set of new state cubes per enumeration, in compari-
son to cube-wise enumeration techniques. Note that in gen-
4.1.2 Purely SAT-based Techniques eral a cofactor can capture not just a single cube, but several

cubes. This is greatly beneficial in reducing the total number

An approach using purely SAT-based techniques was proof solutions enumerated by SAT, sometimes by several orders
posed by McMillan [73], for performing backward symbolic 0f magnitude, in comparison to approaches based on block-
model checking (see Figure 4 in Section 2.3). It is basednd clauses (described above). They also use an efficient cir-
on computing the CNF formula equivalent £X p, where Cuit graph representation for the solution states [64], which
pis an arbitrary Boolean formula, by enumerating all satisfy-is more robust than CNF-based or BDD-based representa-
ing assignments using a SAT solver. Variables are universallyions, and use a hybrid SAT solver [41] to directly work on
quantified by simply dropping the associated literals from thethese representations. Ganai et al.'s quantification technique
resulting CNF. Note that this forms the dual of projection ¢an be used to compute exact image/pre-image state sets, un-
for existentially quantified variables in a Disjunctive Normal like the interpolant-based technique (described above) which
Form using cubes, as used by other researcb@'s[52'80]_ computes apprOXimate state sets. It has been used in SAT-
Each satisfying cube is used to derivielacking clausevhich ~ based unbounded symbolic model checking to handle many
contributes to the set of solutions, and is also added to thélifficult industry examples, which could not be handled by
current database of clauses in order to avoid repetition of th€ither BDDs or blocking-clause based SAT approaches.
solutions. The procedure for deriving a blocking clause ex-

ploits circuit struc_ture i_nforma_tion to re-arrange the_ implica- 4 5 gAT-
tion graph (described in Section 2.2) when a solutioa, (@

satisfying assignment) is found by the SAT solver. This re-]) o
arrangement can be viewed asube enlargemertechnique Inductive reasoning can be a cheap and efficient means of ver-

which allows a larger solution cube to be captured in eacHYing properties, rather than simply finding counter-examples
enumeration by the SAT solver. The overall approach works®S i BMC. Inductive reasoning has previously been used,
well for designs where the sets of states can be representdfth Some success, for various verification problems, includ-
compactly in CNF, and where cube enumeration with block-iNd Property checking using technologies such as BDDs. The
ing clauses does not blow up. mductlvg proof for verifying a prop_ertg? = AGp can be de-
Another model checking approach based on use of SATIVEd using a SAT solver by checking the formutasgse (the

techniques an@raig interpolantshas been proposed in [74]. Das€ Case) anfhauc (the induction step) for unsatisfiability.
Given an unsatisfiable Boolean problem, and a proof of un-

satisfiability derived by a SAT solver, a Craig interpolant can

based Inductive Reasoning

be efficiently computed to characterize the interface between Poase= | NP 5)
two partitions of the Boolean problem. In particular, when @nduc = P A T(Kk+1) A (=P1)

no counterexample exists for degtlin BMC, i.e., the SAT

problem for depttk is found to be unsatisfiable, a Craig in- If ®naucis unsatisfiable the proper is called arinduc-

terpolant is used to obtain an over-approximation of the setive invariant Both formulas, if unsatisfiable, provide a suffi-
of states reachable from the initial state in 1 step (or anycient (but not necessary) condition for verifyiy However,
fixed number of steps). This provides an approximate imagéhe above form of induction, known asmple inductionis
operator, which can be used iteratively to compute an overhot powerful enough to verify many properties.
approximation of the set of reachable states, till a fixpoint Two recent works [18,89] have proposed the use of more
is obtained. If at any point, the over-approximate set is foundpowerful forms of induction known asduction with depth

to violate the given property, then the dejtis increased for ~andunique states inductioto verify safety properties. For
BMC, till either a true counterexample is found, or the over- induction with depttn the formulas of Equation 5 become:
approximation converges without violating the property. The

main advantage of the interpolant-based method is that it does

not require an enumeration of satisfying assignments by the _ i " .

SAT solver. Indeed, the proof of unsatisfiability is used to ef- Gbase = I A <i/=\OT(I’I +1)> " i\=/0 i ©
ficiently compute the interpolant, which serves directly as the Ken ken

over-approximate state set. In practice too, this method has _ . i -

been shown to work better than other BDD-based and SAT- e (1/_\k PJ) " <i/_\kT(I’I +1)) A “Pena

based complete methods. However, if the focus is only on

finding bugsg.g, falsification then, in the current version, it Essentially, induction with depth corresponds to strength-
can not be faster than BMC alone. ening the induction hypothesis, by imposing the original in-

More recently, a SAT-based quantification technique us-duction hypothesisK; in @nque, Equation 5) om consecu-
ing circuit cofactoring has been proposed by Gamail. [40]. tive time-frames. This can be further strengthened by requir-
They too use a SAT solver to enumerate solutions, but theyng that the states appearing on each time-frame be unique

10 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

(unique states inductignThis restriction results in a com- 4.3 SAT-based Abstraction-Refinement Frameworks
plete method for simple safety properties. However, the in-

duction length may be as long as the recurrence diametag, order to handle large designs, there has been a great deal
[15], which in most cases is much longer than the sequentiaf interest in the use of abstraction and refinement techniques
depth. Further, the number of constraints needed to enforcgy verification. Most efforts are refinement-based approaches,
the state uniqueness is quadratic in the depth of unrollieg, where starting from a small abstract model of the concrete
the induction depth, resulting in very large CNFs. In recentdesign, counterexamples found on these models are used to
work [35], Eenet al. partly address this issue by proposing refine them iteratively until either a conclusive result is ob-
an iterative method for induction. The induction hypothesisizined by conservative model checking, or the resources are
starts off without any uniqueness constraints, which are gradexhausted [79]. One of the first attempts to use SAT solvers
Ua”y added in successive iterations till the induction prOOffor Counterexamp|e gu|ded abstraction refinement (CEGAR)
goes through. The efficiency of the method is further im-\yas described by Clarket al. [29]. In their approach, the
proved by using amcremental SATmechanism that allows SAT solver is used to check whether a counterexample trace
sharing of conflict clauses (recorded by the SAT solver) befound during model checking of the abstract model is spu-
tween successive iterations of induction. rious or not, by effectively checking its satisfiability on the
concrete design. Ifitis spurious, ILP (integer linear program-

Another variant of this line of research is the work by ming) gnd machine learning techniques are used to perform
Guptaet al. [48], which is similar to the work by Cabodi the refmeme.nt. In a subsequgnt eff'ort [2.5]’ they used SAT-
et al.[23], discussed in Section 3.3. As in [23], BDD-base bas_ed techniques for performlng_ this rgfmement as We."'. In
techniques are used gfficientlycompute asuccinctover- particular, f[hey proposed heu_rlst|cs using th? SAT decision
approximatiorR"™ of the reachable states of a design. This jg Scores to pick reﬂnement candl_dates among h|dder_1 (abstrgc?ed
used to strengthen the induction hypothesis by impoBihg away) latches. A n,10re mterestlng_te.chr_\l.qug used |degs sim-
as an additional reachability invariant. In particular, it con- lar to a SAT solver's proof of unsatisfiability, in order to iden-

strains the state values that are allowed to appear at the staﬂw Iatchels that aresuflicientto exclude the spurious coun-
ing state of the induction step (or at the interfaces betweeljiere:amﬁ e hod f | ided ab
each successive pair of time-frames). Note that in contrast nother recent method for counterexample guided ab-

to [23], the constraints here are not redundant, but are adde?ﬁtraCtion refinement has been proposed by Véirag. [101].

to strengthen the induction hypothesis, which might be tooThey use BDDs to represent multiple abstract counterexam-

weak with the property alone. This frequently allows induc- p_Ies, W_hiCh are checkeq for satisfiability on the con_crete de-
tion proofs to go through successfully. A related line of re- signusing a SAT ;olver interfaced with BDD F:or?s_tramts [48].
search is based on generating an inductive invariant to be us ther than refining each counterexample individually, they

as over-approximation for the reachable states in the Come)aropolse da gar?_e-ltheoretlc refmemlent procledure, tr:atlattempts
of sequential equivalence checking [18,99,94]. tp exclude mu tiple counterexamples simultaneously. In prac-
tice, their method performs better than other methods based

on refining a single counterexample at a time.

One of the original papers on SAT-BMC [16] had pro- One reason for the popularity of counterexample guided
posed the use of simple induction as a cheap and simple firgtbstraction refinement approaches has been a lack of tech-
pass to apply to all property checking instances before resortiques that could extract relevant information from a rela-
ing to more comprehensive verification/falsification methods.tively large concrete design. This is changing now with the
The above powerful variants of induction undoubtedly en-use of proof analysis techniques for SAT solvers. These tech-
large the range of properties verifiable through inductive reaniques can be easily used to identify a set of clauses from
soning. At the same time they can produce very large SATthe original problem, called thensatisfiable cor¢109, 75],
formulas which are very resource intensive to solve. Hencesuch that the clauses are sufficient for implying unsatisfia-
the real utility of these methods would only be brought out bybility. These unsatisfiable cores form the basis of two re-
a good verification methodology that uses them with the rightcent independent efforts on abstraction methods using SAT-
trade-off between verification power and efficiency, and in thebased BMC [75,50]. In both methods, an abstract model is
right balance with BDD-based verification techniques. Re-obtained from the unsatisfiable core, identified from an un-
cent work by Liet al.[67] points in this direction as well. In satisfiable BMC instance at depthThis abstract model has
this work the authors use SAT-based unique-states inductiothe useful property that it does not have any counterexam-
with depth as the model checking method in an abstraction reples of depth less than or equalkoThe basis for abstrac-
finement framework (discussed in the next section). They obtion is the intuition that aftek is large enough, the corre-
serve that the efficacy of SAT-based induction is considerablysponding abstract model may exclude counterexamples of all
enhanced when used within such a framework. Further, evetengths. The usefulness of the abstraction stems from the em-
within this framework the SAT-based induction exhibits com- pirical evidence that for typical verification applications, the
plementary strengths compared to a traditional BDD-basedinsatisfiable cores and the corresponding abstract models are
model checker, underscoring the need for a combined proofnuch smaller than the concrete designs. There are minor dif-
technique. ferences in the abstraction methods used by these two ap-

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 11

Property

—» TEST stuck—at FAULT
NETWORK

Figure 7. Sequential ATPG for Model Checking

proaches — McMillan and Amla use a gate-level abstraction
while Guptaet al. use a latch-level abstraction. However, the
major differences are in their application settings.

In McMillan and Amla’s approach, a proof of correctness
is attempted for the abstract model derived from BMC on the
concrete design itself. If a counterexample is found, the BMC
depthkis increased, till either a true counterexample is found
on the concrete design, or correctness of the derived abstract
model is proved. They demonstrated many successful applinput sequence that will excite a certain signal in the circuit
cations of their approach on various benchmark exampledo logic 1 or 0. In this respect the core problems solved by se-
However, this approach runs into scalability problems if ei- quential ATPG algorithms are very similar to those expressed
ther the abstract model is too large for unbounded verificaby SAT formulations of circuit problems. Historically, the key
tion, or SAT-based BMC cannot be completed on the concretdlifference between ATPG algorithms and CNF-based SAT
model at the increased depkth solvers has been that the former perform branch-and-bound

In contrast, the approach by Gupetal. [50] proposes search on a structural circuit representation rather than a CNF
aniterative abstractiorframework, which is targeted at iter- database. This allows ATPG tools to implement efficient deci-
atively reducing the size of the abstract models, starting fronsion heuristics based on the circuit structure and to model and
the concrete model. In each iteration, BMC is performed fordeal with real-world circuit primitives, such as tri-state buses
increasing depths on the chosen model. If there is no counand high-impedance logic values. Further, unlike SAT-based
terexample (up to some heuristically chosen depth), a proofbounded model checking, sequential ATPG tools do not need
based abstraction procedure is used to abstract the model fule explicitly replicate the circuit structure when performing
ther for the next iteration. In this framework, a proof of cor- sequential reasoning. More importantly, the latter can be used
rectness on an abstract model in any iteration, guarantees cde implementcompleteproperty checking algorithms while
rectness on the concrete design. On the other hand, a couthe former essentially perform a bounded check. On the other
terexample may require a refinement (if it is spurious), basedand, sequential ATPG tools have traditionally lacked tech-
on either the specific counterexample, or a deeper BMC anakiques such as conflict-based learning and efficient Boolean
ysis on a less abstract model from a previous iteration. Inconstraint propagation (implication generation) which are the
practice, the abstraction loop is iterated up to convergencénain sources of power and efficiency of modern SAT solvers.
in the size of the abstract model. The successive reductions Boppanaet al. [20] were the first to recognize the rel-
in abstract model sizes, typically by two orders of magnitudeative advantages of sequential ATPG solvers over conven-
across all iterations, was crucial for successful verification oftional CNF-SAT solvers and to employ a sequential ATPG
large industry designs. tool to check safety properties on circuits. The basic idea

In practice, refinement-based approaches which start frorof this formulation, as shown in Figure 7, is to construct a
a small abstract model may require many iterations beforeest network, based on the property, and place a fault on the
converging on a model where the proof succeeds. More freeutput of this test network such that this fault is testable if
quently, the size of the refined abstract model grows monoand only if there exists a counter-example for the specified
tonically larger, on which unbounded verification methodsproperty. A key contribution of this work was to recognize
fail to complete. On the other hand, abstraction-based apthat most sequential designs hasygnchronizing sequences
proaches which start from the given concrete model may needihich cause the FSM (finite state machine) to reach a spe-
to handle much larger models. However, note that they daific state (say) regardless of the starting state. Using this,
not require complete verification on these larger models foithe checking of safety properties of the foA@ EF p can be
the purpose of abstraction. We believe there is likely to bereduced to verifyingeFg, p. The authors showed that since
more activity in exploring useful combinations of these ap-there is no explicit storage of states in each time-frame (like
proaches. BDD-based model checkers) a sequential ATPG-based model
checker could outperform conventional BDD-based model
checkers in several cases.

In another work [2], the authors propose a method of
boundedmodel checking using a sequential ATPG tool. Un-
Concurrent with the development of SAT methods for modellike the formulation of [20] where the test network is a com-
checking there has been a growing interest in applying tooldbinational network based on the propegythis work sup-
for automatic test pattern generation (ATPG) of sequentiaports both safety and liveness properties and the test network
circuits to the model checking problem. ATPG tools for se-is a monitor FSM based on both the property and the bound
guential circuits (abbreviated aequential ATPGQools in n, the number of time-steps. A fault specified on the output
the sequel) are designed to search for input sequences to tloé this monitor is testable if and only if the given property
given circuit that can test for the presence of a certain faulthas a counter-example withirtime-steps of the initial state.

A sub-task in this process involves performing a search ornThe authors report impressive speed-ups and memory sav-
the space of input sequences of the sequential machine for angs, compared to a Cadence-SMV BMC based on zChaff.

INPUT
CIRCUIT

5 ATPG-based Model Checking

12 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

In related work, Shengt al.[91] have successfully used Checking satisfiability for QBF, which we also abbreviate
a sequential ATPG tool based on simulation and genetic alas QBF, generalizes SAT and is a PSPACE complete prob-
gorithms for checking safety properties. They observe thatem [93]. QBF is expected to have exponential complexity
such a tool, while not suitable forerification per se, can and to be strictly harder than NP. It has been observed in [83]
be very effective in finding bugs. Huan and Cheng [56] havethat the symbolic reachability problem is PSPACE complete
used a combination of structural, word-level ATPG and mod-as well. Thus there exist polynomial reductions from sequen-
ular arithmetic constraint solving techniques to check safetytial property checking to QBF and vice versa. For our pur-
properties. pose of using QBF solvers for sequential property checking
While a recent experimental comparison between SATwe give a translation of checking safety properties to check-
and ATPG based BMC approaches [78] found no real perforing satisfiability of QBF. The other directione., translating
mance gap between the two formulations, our experience ha®BF to symbolic reachability, can be obtained from [34] in
shown that model checking approaches based on ATPG toolsombination with [84].
and CNF-SAT solvers really have orthogonal strengths. Thus, Consider the forward safety checking algorithm of Fig-
ATPG-based model checkers can be superior to SAT-BMC orure 3 in Section 2.3. Here, the check to see if a bad state
certain benchmarks and vice versa. Current research is aimgdiolating the safety property) is contained in the set of states
at producing a tool that combines the benefits of both types ofeached in the current iteration can be formulated as a SAT
engines. The hybrid SAT solver [41] discussed in Section 2.Zoroblem, since all the quantifiers introduced are of the same
is one such attempt. Another significant step in this directiontype. Only in the termination check an alternation of quanti-
has been reported by lyet al. in the SATORI solver [59]. fiers occurs.
SATORI is a complete algorithm for sequential Boolean rea- |f we use QBF to represent sets of states symbolically we
soning. It is based on algorithms and techniques available iget a complete procedure. Instead of performing an image
modern sequential ATPG tools which have been augmentedomputation in each iteration of the algorithm, as in classi-
with some flavorof the techniquese(g, efficient BCP and cal BDD based algorithms [22,72] or in modern SAT based
conflict-driven learning) available in modern SAT solvers. fixpoint algorithms [73] (see Section 4.1.2) the image can be
represented symbolically with QBF by introducing quanti-
fiers without eliminating them. Then the termination check
6 QBF of the fixpoint algorithm becomes an instance of checking
satisfiability of QBF (see Section 4 of [80]). Regardless of
Checking the satisfiability of the more expressive logic of the fact that the implementation of QBF solvers is still in its
Quantified Boolean Formula@QBF), is equivalent to sym- infancy, this approach has the drawback that the number of
bolic reachability and thus sequential property checking. Thisterations of the fixpoint algorithm can only be bounded by
fact, in principle, can be used to obtain a QBF-based modethe diameter of the model and is therefore exponential in the
checking algorithm. In the future, QBF may play the samesize of the model, in the worst case.
role for sequential property checking or model checking, as Starting from iterative squaring [22] an even linear reduc-
SAT does today for combinational property checking. There-tion can be obtained. The original idea of iterative squaring is
fore, we briefly explain the connection between QBF andto compute the transitive closuffé of the transition relation
model checking and show how SAT based techniques for unT according to the following equation:
bounded model checking relate to QBF. We conclude the sec-

tion with an overview on the state-of-the-art of algorithms TA(st) =3 [T'(s,§) AT(S,1)] (7)
and implementations for solving QBF, which naturally are
very similar to those used for SAT. Let the model consists of state bits (flip-flops). Thefi* =

TMwith m= 2". Thus aftem applications of the above equa-
tion T* is obtained. If the first argument af* can be re-
stricted to the set of initial states, the resulting expression is
the characteristic function of the set of reachable states. In

2 . i : order to keep the exposition simple, we assume that the tran-
eralization of propositional logic, the input language of SAT

I hat all Bool bl b fiod. T . sition relation contains the identity relation. This is equivalent
solvers, that allows Boolean variables to be quantified. Typi- assuming that the model may always stall.

cal examples are the following two formulas

6.1 QBF for Model Checking

The logic of Quantified Boolean Formulae (QBF) is a gen-

Originally BDDs would have been used for representing
Ti, with the problem that an additional set of variables is in-
volved when eliminating the quantifier in Equation 7 com-
the first formula beingrue and the second evaluatingfadse pared to standard image computation as in Equation 1. Ad-
This already highlights the most important difference betweemlitionally, the approximations to the transitive closure of the
QBF and SAT: the quantification order of the variables in transition relation can not be kept in partitioned form, which
which the formula is evaluated matters. Note, that a propo+esults in very large BDDs. Moreover there is no obvious
sitional formula is an instance of a QBF formula with only way to restrict the computation to the reachable state space.
existentially quantified variables. These problems may be the reasons that iterative squaring

Vx[3y[x—y]] and 3y[vx[x < y]],

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 13

was not used much in practice when using BDDs. In the conalgorithm in [7] expands quantifiers by copying and substitu-
text of SAT, iterative squaring was successfully applied intion:
[103], by assuming determinism except for the choice of the vx[f] = f[0/x] A f[1/X
initial state.

In principle, in order to get a QBF based algorithm, we
only need to apply the above equatinriimes and add the
initial state constraints to obtain a propositional formula that

represents all reachable states. However, the parameter ”Sﬂﬁefix. Second, for a universal variableit is required that

of the two occurrences of' in the body of the quantifier both sub-problems, assigning= 0 andx = 1, have to return
are different, and thus applying the equation usually inVOlve%atisfiabIe ’ '

doubling the size of the formula. Additionally, there is almost Recently, several groups [108,43,66] independently ap-

no chance for sharing common subformulae. With BODS jia | techniques from the SAT domain to QBF, such as the
may potentially be represented by a small BDD. Also one carg,jict._griven learning and conflict-driven backtracking tech-
hope that the quantme.r eliminations are chgap. But dwectlyniques discussed in Section 2.2. However, QBF provides the
using the above equation to generate QBF is not better thag, iy nity to learn not only conflict clauses, but also mod-
unrolling .the transition relation asin BMC. els for speeding up the search for universally quantified vari-
By using QBF as presented in [83] (see also [82]) the ef-gpjes. Finally, there is the notion of g-resolution [62], which
fect of copyingT" twice can be avoided. We introduce & new i, principle gives a complete decision procedure for QBF,
universally quantified variable that determines which of the but, for the same reason as the resolution-based Davis & Put-
two parameter lists should be used. nam procedure [33], requires too much memory in practice.
However, more recently it has been observed in [13] that the
combination of g-resolution with expansion can lead to an

Earlier attempts [24] for QBF are based on DPLL. In essence,
an algorithm similar to that of Figure 1 can be used. There
are two major differences. First, decision variables can only
be picked in the same order as they occur in the quantifier

use left parameter list

T2 (st) = 3g[ve[l,r[(c— (I,r) = (s,8)) A efficient QBF decision procedure, which in many cases out-
_ i performs DPLL style solvers.

©= (N =E)ATEN] The structure of the QBF problem is much richer than the

use right parameter list simpler SAT problem. More optimizations are possible and

. . o . probably also necessary. Algorithms and tools are not as ma-
Now applying this equation times merely introducesi®x- ture as for SAT. Implementations of QBF solvers are steadily
istentially quantified state bit vectors andiniversally quan- improving. A large set of benchmarks is availd@d a stan-
tified variables and needs only one copy of the transition reladard input format exists (QDIMACS).
tion. The result is not propositional anymore, since it involves As mentioned ear"er, the restriction on the order of deci-
2n alternations of quantifiers but it is quadratic in the numbersion variables is the major difference between QBF and SAT.
of state bitsn. It still needs to be seen, whether this formu- |n practice, this also seems to severely restrict the size of the
lation of symbolic reachability is beneficial in practice, but problems that can be handled. However, a QBF formulation
clearly there is a potential for an exponential speedup, comof a problem may be exponentially more succinct. Thus there

pared to current algorithms. is a potential for an exponential speedup using QBF solvers,
which may have a large impact in the context of sequential
6.2 QBF Solvers property checking.

The efficiency of the approach described above relies on eff SAT-based Verification: Achievements & Challenges
ficient implementations of QBF solvers. We briefly give an

overview on the state-of-the-art in QBF solvers. For more de-There has been significant progress in the area of SAT-based
tails the interested reader is referred to the report on the evalyzerification over the last decade. However, much remains to
ation of QBF solvers for the SAT'2003 conference [12]. First he done to make this technology more pervasive in industrial
note that techniques for image computation in model checkgesign verification flows. In the following we discuss the no-

ing can be interpreted as QBF decision procedures, since thagple achievements and major challenges in SAT-based veri-
essentially provide a quantifier elimination procedure. As al-fication.

ready described, these techniques are based on BDDs as in
traditional symbolic model checking [22], based on structural7 1 Achievements
methods [99, 94], directly based on SAT [73,74], or based on

combination of SAT and other decision d|agrams[1,52,103]._rhe single most important achievement of SAT-based verifi-

An enumeration based explicit QBF decision procedure, _.: .
. . S) .~~~ “'cation has been its emergence as an orthogonal technology
which mentions applications to model checking, and is sim-

ar 0 the SAT based mage computaton o Nolan (73] ¢ 20056586 modelcheckin echiques Counced e ur
discussed in Section 4.1.2, can be found in [80]. Related tQ '

the explicit quantifier expansion in [1,103] the structural QBF * http://imww.qgbflib.org

14 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

one technology significantly out-performs the other and vicein the SATORI solver [59] which partly integrates ideas from
versa. Further, SAT-based techniques have been found to baodern SAT solvers and sequential ATPG tools.

less sensitive to the problem size and typically require much As the simplicity of the SAT problem helped to improve
less user tuning of parameters. Hence, such methods are capagorithms and implementations for combinational property
ble of verifying much larger systems than those typically han-checking, including BMC, QBF may play the same role for
dled by BDDs, and of enhancing productivity by obviating (complete) sequential property checking. Thus improvements
the need for user ingenuity and tuning effort. Bounded Modelto the capacity of QBF solvers will have a large impact on
checking (BMC) based on SAT methods has been found to beequential property verification, in addition to providing an
particularly effective at generating counterexamples for hardimportant research topic on its own.

to-find bugs at short to medium depths (upto depth-5D) While it is clear that SAT-based verification techniques
of sequential behavior. will continue to make inroads into current verification method-
ology and tools, in our opinion the satisfactory solution of
some of the issues discussed above will be crucial in making
this technology more widely applicable. In any case, the next
few years promise to be an interesting time for researchers
While SAT-based verification methods have proven to be orworking in this area as well for tool developers seeking to in-
thogonal to their BDD counterparts there is very little fun- tegrate this technology into the next generation of verification

7.2 Challenges

damental understanding of their respective strengths. In thigools in industrial practice.

respect, a major challenge is to develogeafication method-
ology which employs both SAT and BDD methiodsmanner
best suited to utilize their respective strengths.

The strength of SAT-based verification techniques lies pri-
marily in falsification. BDD-based symbolic model checking
continues to be the de-facto standard for verifying proper-
ties. Several attractive techniques ®AT-based unbounded
model checking (UMChave been proposed in recent years,
including methods for SAT-based state space traversal, induc-
tive reasoning and iterative abstraction refinement surveyed

in Section 4. As it currently stands this body of research is 2.

rich in promising ideas but somewhat immature. For exam-
ple, among the several variants of induction, the most scalable
ones €.g, simple induction) are too weak to prove most prop-
erties while the most comprehensive oneg{(unique states
induction with depth) may not be applicable to the largest de-
signs. Therefore, further research is needed to develop SAT-
based unbounded model checking into a viable alternative to
BDD-based symbolic model checking.

SAT-based BMC is currently used as a falsification tech-
nique. However, as pointed out the original proponents of
SAT-based BMC [26], the technique can be used to formally
verify properties by performing the BMC check upto the se-
quential circuit depth (or some over-approximation thereof).

Recently, there have been several attempts at the problem of5

computing the sequential deptha given system. Tight over-
approximations would also be valuable. But the inherent in-

tractability of the problem has frustrated attempts at finding .

a general, scalable solution. Nevertheless, such a solution, if
discovered, would greatly enhance both the efficacy and ap-
plicability of SAT-based BMC techniques.

This issue lies at the very core of the SAT-BMC formu-
lation. Since the BMC formulation uses an explicit unrolling
of time-frames, the generated SAT formulas can become too
large, and hence unsolvable for large sequential depths. A de-
sirable solution to this is the development of a sequential rea-
soning engine that implements all the features of modern SAT
solvers but does not require explicit unrolling of the circuit. A
first attempt orimplicit time-frame unrollinghas been made

3. Rajeev Alur. Timed Automata.

7. Abdelwaheb Ayari and David Basin.

References

1. Parosh A. Abdulla, Per Bjesse, and NiklasnE Symbolic

Reachability Analysis Based on SAT-Solvers. In Susanne Graf
and Michael Schwartzbach, editoPypceedings of theth In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACA®jume 1785 of
Lecture Notes in Computer Scienpages 411-425. Springer,
March 2000.

Jacob A. Abraham, Vivekananda M. Vedula, and Daniel G.
Saab. Verifying Properties Using Sequential ATPG.Pho-
ceedings of the International Test Conference (ITg3ges
194-202, October 2002.

In Nicolas Halbwachs and
Doron Peled, editorsProceedings of tha 1th International
Conference on Computer Aided Verification (CAWlume
1633 of Lecture Notes in Computer Sciengeages 8-22.
Springer, July 1999.

. Nina Amla, Robert Kurshan, Kenneth McMillan, and Ricardo

Medel. Experimental Analysis of Different Techniques for
Bounded Model Checking. In Hubert Garavel and John Hat-
cliff, editors, Proceedings of theth International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACASJ)olume 2619 of_ecture Notes in Computer
Sciencepages 34-48. Springer, April 2003.

Henrik R. Andersen and Henrik Hulgaard. Boolean Expres-
sion Diagrams. Information and Computatiqrl79(2):194—
212, December 2002.

Abdelwaheb Ayari and David Basin. Bounded model con-
struction for monadic second-order logics. In E. Allen Emer-
sonand A. Prasad Sistla, editdPsoceedings of th&2" Inter-
national Conference on Computer-Aided Verification (GAV)
number 1855 in Lecture Notes in Computer Science, pages
99-113. Springer, July 2000.

QUBOS: Deciding
Quantified Boolean Logic using Propositional Satisfiability
Solvers. In Mark Aagard and John W. O’Leary, editd?sy-
ceedings of thé!" International Conference on Formal Meth-
ods in Computer-Aided Design (FMCADjolume 2517 of
Lecture Notes in Computer Scienpages 187-201. Springer,
2002.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

Thomas Ball and Sriram K. Rajamani. The SLAM project:
Debugging system soft-ware via static analysis.Pceed-
ings of the2d" SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (PORLpages 1-3. ACM, Jan-
uary 2002.

. Clark W. Barrett, David L. Dill, and Aaron Stump. Checking

Satisfiability of First-Order Formulas by Incremental Transla-
tion to SAT. In Ed Brinksma and Kim G. Larsen, editdPso-
ceedings of thd 4" International Conference on Computer
Aided Verification (CAV)volume 2404 ofLecture Notes in
Computer Scienc@ages 236—249. Springer, July 2002.
Jason Baumgartner, Andreas Kuehlmann, and Jacob A. Abra-
ham. Property Checking via Structural Analysis. In
Ed Brinksma and Kim G. Larsen, editoRRroceedings of the
14" International Conference on Computer Aided Verification
(CAV), volume 2404 ofLecture Notes in Computer Science
pages 151-165. Springer, July 2002.

Roberto J. Bayardo and Robert C. Schrag. Using CSP look-
back techniques to solve real-world SAT instances.Pio-
ceedings of the National Conference on Atrtificial Intelligence
(AAALI), pages 203-208, July 1997.

Daniel Le Berre, Laurent Simon, and Armando Tachella.
Challenges in the QBF Arena: the SAT'03 Evaluation of QBF
Solvers. In Enrico Giunchiglia and Armando Tacchella, edi-
tors, Proceedings of thé'" International Conference on The-
ory and Applications of Satisfiability Testing (SAVdlume
2919 ofLecture Notes in Computer Sciengages 468-485.
Springer, May 2004.

Armin Biere. Resolve and Expand. Rroceedings of the
7th International Conference on Theory and Applications of
Satisfiability Testing (SATMay 2004.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
Masahiro Fujita, and Yunshan Zhu. Symbolic Model Check-
ing using SAT procedures instead of BDDs. Rroceedings

of the36™" Design Automation Conference (DA@pges 317—
320, June 1999.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and
Yunshan Zhu. Symbolic Model Checking without BDDs. In
Rance Cleaveland, editd?roceedings of the!" International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACASdlume 1579 ol ecture Notes

in Computer Scienggages 193-207. Springer, March 1999.
Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan
Zhu. Verifying safety properties of a PowerPC microproces-
sor using symbolic model checking without BDDs. In Nico-

las Halbwachs and Doron Peled, editdPspceedings of the 28.

11N International Conference on Computer Aided Verification
(CAV), volume 1633 ofLecture Notes in Computer Science
pages 60-71. Springer, July 1999.

Armin Biere, Edmund M. Clarke, and Yunshan Zhu. Multi-
ple State and Single State Tableaux for Combining Local and
Global Model Checking. In ErnstiRliger Olderog and Bern-
hard Steffen, editorsCorrect System Design, Recent Insight
and Advancesvolume 1710 ofLecture Notes in Computer
Sciencepages 163-179. Springer, 1999.

Per Bjesse and Koen Claessen. SAT-based Verification with-
out State Space Traversal. In Warren A. Hunt Jr. and Steven D.
Johnson, editorsProceedings of th&d International Con-

N

ference on Formal Methods in Computer Aided Design (FM- 31.

CAD), volume 1954 ofLecture Notes in Computer Science
pages 372-389. Springer, November 2000.

Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding
Bugs in an Alpha Microprocessor Using Satisfiability Solvers.

20.

21.

22.

23.

24.

25.

26.

27.

9.

30.

15

In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of thd3" International Conference on Com-
puter Aided Verification (CAVYolume 2102 of_ecture Notes

in Computer Scien¢g@ages 454-464. Springer, July 2001.
Vamsi Boppana, Sreeranga P. Rajan, Koichiro Takayama, and
Masabhiro Fujita. Model Checking Based on Sequential ATPG.
In Nicolas Halbwachs and Doron Peled, editd?syceedings

of the11" International Conference on Computer-Aided Ver-
ification (CAV) volume 1633 ofLecture Notes in Computer
Sciencepages 418-430. Springer, July 1999.

Randal E. Bryant. Graph Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers
C(35):677-691, August 1986.

Jerry R. Burch, Edmund M. Clarke, David E. Long, Ken-
neth L. McMillan, and David L. Dill. Symbolic model check-
ing for sequential circuit verificationlEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
13(4):401-424, April 1994,

Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Improv-
ing SAT-based Bounded Model Checking by Means of BDD-
based Approximate Traversals. Rroceedings of the De-
sign Automation and Test in Europe (DATBages 898-903,
March 2003.

Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An
Algorithm to Evaluate Quantified Boolean Formulae.Piro-
ceedings of tha5" National Conference on Artificial Intelli-
gence (AAAl)pages 262-267, July 1998.

Pankaj Chauhan, Edmund M. Clarke, James Kukula, Samir
Sapra, Helmut Veith, and Dong Wang. Automated Abstrac-
tion Refinement for Model Checking Large State Spaces using
SAT based Conflict Analysis. In Mark Aagaard and John W.
O'Leary, editors,Proceedings of th@!" International Con-
ference on Formal Methods in Computer-Aided Design (FM-
CAD), volume 2517 ofLecture Notes in Computer Science
pages 33-51, November 2002.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan
Zhu. Bounded Model Checking Using Satisfiability Solv-
ing. Formal Methods in System Desid9(1):7—34, July 2001.
Kluwer Academic Publishers.

Edmund M. Clarke and E. Allen Emerson. Design and Synthe-
sis of Synchronization Skeletons Using Branching-Time Tem-
poral Logic. In Dexter Kozen, editdProceedings of the Work-
shop on Logic of Programsolume 131 ofLecture Notes in
Computer Sciencgages 52—-71. Springer, 1982.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model CheckingMIT Press, 2000.

Edmund M. Clarke, Anubhav Gupta, James Kukula, and Ofer
Strichman. SAT-based Abstraction Refinement Using ILP and
Machine Learning Techniques. In Ed Brinksma and Kim G.
Larsen, editorsProceedings of tha4t" International Confer-
ence on Computer Aided Verification (CAVdlume 2404 of
Lecture Notes in Computer Scienpages 265-279. Springer,
July 2002.

Edmund M. Clarke and Bernd-Holger Schlingloff. Model
Checking. In John Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasonjnglume 2, chap-
ter 24, pages 1635-1790. Elsevier and MIT Press, 2001.
Fady Copti, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila
Kambhi, Armando Tacchella, and Moshe Y. Vardi. Benefits of
Bounded Model Checking in an Industrial Setting. 1&rérd
Berry, Hubert Comon, and Alain Finkel, editoRoceedings

of the13" International Conference on Computer Aided Ver-

16

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

ification (CAV) volume 2102 ofLecture Notes in Computer
Sciencepages 436-453. Springer, July 2001.

Martin Davis, George Logemann, and Donald Loveland. A
Machine Program for Theorem-Provin@ommunications of
the ACM 5(7):394-397, July 1962.

Martin Davis and Hilary Putnam. A Computing Procedure for 49.

Quantification Theory. Journal of the ACM 7(3):201-215,
July 1960.

Francesco M. Donini, Paolo Liberatore, Fabio Massacci, and
Marco Schaerf. Solving QBF with SMV. IRroceedings of
the Eighth International Conference on Principles of Knowl-
edge Representation and Reasoning (Kpjges 578-589,
2002.

Niklas Een and Niklas 8rensson. Temporal Induction by In-
cremental SAT Solving. In Ofer Strichman and Armin Biere,
editors, Proceedings of the First International Workshop on
Bounded Model Checking (BMCYolume 89 ofElectronic
Notes in Theoretical Computer Scienégsevier, July 2003.

E. Allen Emerson. Temporal and modal logjcvolume B,
chapter 16, pages 995-1072. MIT Press, 1990.

Farzan Fallah. Binary Time-Frame ExpansiorRPioceedings

of the International Conference on Computer Aided Design
(ICCAD), pages 458-464, November 2002.

Hideo Fujiwara and Takeshi Shimono. On the acceleration of
test generation algorithm$EEE Transactions on Computers
C-32:1137-1144, December 1983.
Malay K. Ganai and Adnan Aziz.
Bounded Reachability Analysis. Proceedings of th&5h In-
ternational Conference on VLSI Design (VLSIPages 729—
734, January 2002.

Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient

SAT-based Unbounded Symbolic Model Checking using Cir- 54.

cuit Cofactoring. InProceedings of the International Confer-
ence on Computer-Aided Design (ICCADpvember 2004.
Malay K. Ganai, Lintao Zhang, Pranav Ashar, and Aarti
Gupta. Combining Strengths of Circuit-based and CNF-based
Algorithms for a High Performance SAT Solver. froceed-
ings of the39" Design Automation Conference (DA@gges
747-750, June 2002.

Michael R. Garey and David S. Johnso@omputers and
Intractability: A Guide to the Theory of NP-completeness
W. H. Freeman, San Francisco, 1979.

Enrico Giunchiglia, Massimo Narizzano, and Armando Tac-
chella. Learning for Quantified Boolean Logic Satisfiability.
In Proceedings of thé8" National Conference on Artificial
Intelligence (AAAl)pages 649-654, July 2002.

Prabhakar Goel. An implicit enumeration algorithm to gener-
ate tests for combinational logic circuitdEEE Transactions
on ComputersC-30:215-222, March 1981.

Evgueni Goldberg and Yakov Novikov. BerkMin: a Fast and
Robust Sat-Solver. IRroceedings of Design Automation and
Test in Europe (DATE)pages 142-149, March 2002.

Evgueni Goldberg and Yakov Novikov. Verification of Proofs
of Unsatisfiability for CNF Formulas. IRroceedings of the
Design Automation and Test in Europe (DATBages 886—
891, March 2003.

Evgueni Goldberg, Mukul R. Prasad, and Robert K. Brayton.
Using SAT for Combinational Equivalence Checking.Fro-
ceedings of Design Automation and Test in Europe (DATE)
pages 114-121, March 2001.

Aarti Gupta, Malay Ganai, Chao Wang, Zijiang Yang, and 61.

Pranav Ashar. Abstraction and BDDs Complement SAT-based

50.

51.

52.

Improved SAT-based 53.

55.

56.

57.

58.

50.

60.

BMC in DiVer. In Warren A. Hunt Jr. and Fabio Somenzi,
editors,Proceedings of tha5h International Conference on
Computer-Aided Verification (CAVWolume 2725 ofLecture
Notes in Computer Sciencpages 206—209. Springer, July
2003.

Aarti Gupta, Malay Ganai, Chao Wang, Zijiang Yang, and
Pranav Ashar. Learning from BDDs in SAT-based Bounded
Model Checking. IrProceedings of thd0" Design Automa-
tion Conference (DAC)pages 824-829, June 2003.

Aarti Gupta, Malay Ganai, Zijiang Yang, and Pranav Ashar.
Iterative Abstraction Using SAT-based BMC with Proof Anal-
ysis. In Proceedings of the International Conference on
Computer Aided Design (ICCAD)ages 416423, November
2003.

Aarti Gupta, Anubhav Gupta, Zijiang Yang, and Pranav Ashar.
Dynamic Detection and Removal of Inactive Clauses in SAT
with Application in Image Computation. IRroceedings of
the 38" Design Automation Conferengeages 536-541, June
2001.

Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta.
SAT Based State Reachability Analysis and Model Checking.
In Warren A. Hunt and Steven D. Johnson, editéhsiceed-
ings of the3™ International Conference on Formal Methods
in Computer-Aided Design (FMCADyolume 1954 ofLec-
ture Notes in Computer Sciengeages 354-371, November
2000.

Aarti Gupta, Zijiang Yang, Pranav Ashar, Lintao Zhang, and
Sharad Malik. Partition-Based Decision Heuristics for Image
Computation Using SAT and BDDs. FProceedings of the In-
ternational Conference on Computer Aided Design (ICCAD)
pages 286—-292, November 2001.

Thomas A. Henzinger, Orna Kupferman, and Shaz Qadeer.
From Pre-historic to Postmodern symbolic model checking.
In Alan J. Hu and Moshe Y. Vardi, editor®roceedings of
the 10" International Conference on Computer-Aided Verifi-
cation (CAV) volume 1427 of_ecture Notes in Computer Sci-
ence pages 195-206. Springer, July 1998.

Gerard J. HolzmaniDesign and Validation of Computer Pro-
tocols Prentice Hall, 1991.

Chung-Yang Huan and Kwang-Ting Cheng. Using Word-
Level ATPG and Modular Arithmetic Constraint-Solving
Techniques for Assertion Property CheckindEEE Trns-
actions on Computer-Aided DesigB0(3):381-391, March
2001.

Hiroaki lwashita and Tsuneo Nakata. Forward Model Check-
ing Techniques Oriented to Buggy DesignsPioceedings of
the International Conference on Computer-Aided Design (IC-
CAD), pages 400-404, November 1997.

Hiroaki Iwashita, Tsuneo Nakata, and Fumiyasu Hirose. CTL
model checking based on forward state traversaPrbteed-
ings of the International Conference on Computer-Aided De-
sign (ICCAD) pages 82-87, November 1996.

Madhu K. lyer, Ganapathy Parthasarathy, and Kwang-Ting
Cheng. SATORI-A Fast Sequential SAT Engine for Circuits.
In Proceedings of the International Conference on Computer-
Aided Design (ICCAD)pages 320-325, November 2003.
Daniel Jackson and Mandana Vaziri. Finding bugs with a con-
straint solver. IrProceedings of the International Symposium
on Software Testing and Analysis (ISST#gges 14-25, Au-
gust 2000.

Joonyoung Kim, Jesse Whittemore, and Karem Sakallah. On
Solving Stack-Based Incremental Satisfiability Problems. In

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

Proceedings of the International Conference on Computer De-
sign (ICCD) pages 379-382, October 2000.

Hans Kleine Bning, Marek Karpinski, and Andreas Flgel.
Resolution for quantified boolean formulasformation and
Computation117(1):12-18, February 1995.

Hans Kleine Bning and Theodor LettmannPropositional
logic: Deduction and Algorithmsvolume 48 ofCambridge
Tracts in Theoretical Computer Scienc€ambridge Univer-
sity Press, 1999. ISBN-0-521-63017-7.

Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and
Malay K. Ganai. Robust Boolean Reasoning for Equivalence
Checking and Functional Property VerificatiolEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems21(12):1377-1394, December 2002.

Tracy Larrabee. Test Pattern Generation Using Boolean Sat-
isfiability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systentsl(1):4-15, January 1992.
Reinhold Letz. Lemma and Model Caching in Decision Pro-
cedures for Quantified Boolean Formulas. In Uwe Egly and
Christian G. Fernaller, editors,Proceedings of International
Conference on Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUXplume 2381 ol ecture
Notes in Computer Sciencgpringer, July 2002.

Bing Li, Chao Wang, and Fabio Somenzi. A Satisfiability-
based Approach to Abstraction Refinement in Model Check-
ing. In Proceedings of the First International Workshop on
Bounded Model Checking (BMCYolume 89 ofElectronic
Notes in Theoretical Computer Scien&g#sevier, July 2003.
Feng Lu, Li-C. Wang, Kwang-T. Cheng, John Moondanos,
and Ziyad Hanna. A Signal Correlation Guided ATPG Solver
And Its Applications For Solving Difficult Industrial Cases.
In Proceedings of thel0" Design Automation Conference
(DAC), pages 436—441, June 2003.

Feng Lu, Li-C. Wang, Kwang-Ting Cheng, and Ric Chung-
Yang Huang. A Circuit SAT Solver with Signal Correlation
Guided Learning. IrProceedings of the Design Automation
and Test in Europe (DATEpages 892—-897, March 2003.

J@o P. Marques-Silva. The Impact of Branching Heuristics in
Propositional Satisfiability Algorithms. IRroceedings of the
9" Portuguese Conference on Artificial Intelligence (ERIA)
September 1999.

J@o P. Marques-Silva and Karem A. Sakallah. GRASP: A
Search Algorithm for Propositional Satisfiabilit§EEE Trans-
actions on Computergl8(5):506-521, May 1999.

Kenneth L. McMillan. Symbolic Model Checking: An ap-
proach to the State Explosion ProblenKluwer Academic
Publishers, 1993.

Kenneth L. McMillan. Applying SAT Methods in Unbounded
Symbolic Model Checking. In Ed Brinksma and Kim G.
Larsen, editorsProceedings of thé4" International Confer-
ence on Computer-Aided Verificatiorolume 2404 ot.ecture
Notes in Computer Sciencpages 250-264. Springer, July
2002.

Kenneth L. McMillan. Interpolation and SAT-based Model
Checking. In Jr. Warren A. Hunt and Fabio Somenazi, editors,
Proceedings of thaé5" Conference on Computer-Aided Ver-
ification (CAV) volume 2725 ofLecture Notes in Computer
Sciencepages 1-13. Springer, July 2003.

Kenneth L. McMillan and Nina Amla. Automatic abstrac-
tion without counterexamples. In Hubert Garavel and John
Hatcliff, editors,Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of

76.

7.

78.

17

Systems (TACASJ)olume 2619 of_ecture Notes in Computer
Sciencepages 2—17. Springer, April 2003.

Maher Mneimneh and Karem Sakallah. SAT-Based Sequential
Depth Computation. liProceedings of the First International
Workshop on Constraints in Formal VerificatioBeptember
2002.

Matthew H. Moskewicz, Conor F. Madigan, Ying Zhao, Lin-
tao Zhang, and Sharad Malik. Chaff: Engineering an Efficient
SAT Solver. InProceedings of th&8" Design Automation
Conference (DAG)pages 530-535, June 2001.

Ganapathy Parthasarthy, Chung-Yang Huang, and Kwang-
Ting Cheng. An Analysis of ATPG and SAT algorithms for
Formal Verification. InProceedings of thé" International
High-Level Design Validation and Test Workshop (HLDVT)
pages 177-182, November 2001.

79. Robert P.KursharComputer-Aided Verification of Coordinat-

ing Processes: The Automata-Theoretic Approaéhinceton
University Press, 1995.

0. David Plaisted, Armin Biere, and Yunshan Zhu. A Satisfia-

1. David Plaisted and Steven Greenbaum.

82.

83.

84.

85.

bility Procedure for Quantified Boolean FormulaBiscrete
Applied Mathematicsl30(2):291-328, August 2003.

A Structure-
preserving Clause Form TranslationJournal of Symbolic
Computation2(3):293-304, September 1986.

Jussi Rintanen. Partial implicit unfolding in the davis-putnam
procedure for quantified boolean formulae. liternational
Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR2001.

W. J. Savitch. Relational between nondeterministic and de-
terministic tape complexityJournal of Computer and System
Sciences4:177-192, 1970.

Viktor Schuppan and Armin Biere. Efficient reduction of finite
state model checking to reachability analyssoftware Tools

for Technology Transfer (STT,B(1-2):185-204, March 2004.
Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strate-
gies for Improving Local Search. IRroceedings of tha2h
National Conference on Atrtificial Intelligence (AAAPages
337-343, July 1994.

86. Bart Selman, Hector J. Levesque, and David Mitchell. A New

87.

88.

89.

90.

91.

Method for Solving Hard Satisfiability Problems. Rtoceed-

ings of thel(" National Conference on Artificial Intelligence
(AAAI), pages 440-446, July 1992.

Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A
Hybrid SAT-Based Decision Procedure for Separation Logic
with Uninterpreted Functions. IRroceedings of thetdfh
Design Automation Conference (DAQ@grges 425-430, June
2003.

Ohad Shacham and Emmanuel Zarpas. Tuning the VSIDS de-
cision heuristic for bounded model checking. Rroceedings

of the4™" International Workshop on Microprocessor Test and
Verification (MTV) pages 75-79, May 2003.

Mary Sheeran, Satnam Singh, and Gunnain&irck. Check-
ing safety properties using induction and a SAT-solver.
Warren A. Hunt Jr. and Steven D. Johnson, editBrsceed-
ings of the3™ International Conference on Formal Methods
in Computer Aided Design (FMCADJolume 1954 of ecture
Notes in Computer Sciengeages 108-125. Springer, Novem-
ber 2000.

Mary Sheeran and Gunnar &Bharck. A tutorial on
Stalmarck’s proof procedure for propositional logi€ormal
Methods in System Desigh6(1):23-58, January 2000.

Shuo Sheng, Koichiro Takayama, and Michael S. Hsiao.
Effective Static Property Checking Using Simulation-Based

In

18

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

ATPG. InProceedings of th89" Design Automation Con-
ference (DAC)pages 813-818, June 2002.

Ofer Shtrichman. Sharing Information Between Instances of105.

Propositional Satisfiability (SAT) Problems, Jan 2000. US
patent (Disclosure number: IL8-2000-0070).

L. J. Stockmeyer and A. R. Meyer. Word problems requir-
ing exponential time. IfProceedings of th&™" Annual ACM
Symposium on the Theory of Computing (ST(@pes 1-9,
1973.

Dominik Stoffel and Wolfgang Kunz. Record & Play: A Struc-
tural Fixed Point Iteration for Sequential Circuit Verification.
In Proceedings of the International Conference on Computer
Aided Design (ICCAD)pages 394 — 399, November 1997.
Ofer Strichman. Tuning SAT Checkers for Bounded Model
Checking. In E. Allen Emerson and A. Prasad Sistla, editors,
Proceedings of thd2" International Conference on Com-
puter Aided Verification (CAVYyolume 1855 of_ecture Notes

in Computer Scieng@ages 480-494. Springer, July 2000.
Ofer Strichman.
Bounded Model Checking Problem. In Tiziana Margaria and
Thomas F. Melham, editorBroceedings of th&1th Advanced
Research Working Conference on Correct Hardware Design
and Verification Methods (CHARMB)olume 2144 of ecture
Notes in Computer Sciengeages 58—70. Springer, September
2001.

Ofer Strichman. On Solving Presburger and Linear Arith-
metic with SAT. In Mark Aagaard and John W. O’Leary, edi-
tors, Proceedings of thd!" International Conference on For-
mal Methods in Computer-Aided Design (FMCADdlume
2517 ofLecture Notes in Computer Sciengages 160-170.
Springer, November 2002.

G. S. Tseitin. On the Complexity of Derivation in Proposi-
tional Calculus. InStudies in Constructive Mathematics and
Mathematical Logic, Part llvolume 8 ofSeminars in Mathe-
matics pages 234-259, Leningrad, 1968. V.A. Steklov Math-
ematical Institute. English Translation: Consultants Bureau,
New York, 1970, pages 115 — 125.

C. A. J. van Eijk. Sequential Equivalence Checking without
State Space Traversal. Rroceedings of the Design Automa-
tion and Test in Europe (DATEpages 618-623, February
1998.

Miroslav N. Velev and Randal E. Bryant. Effective Use of
Boolean Satisfiability Procedures in the Formal Verification of
Superscalar and VLIW Microprocessotaurnal of Symbolic
Computation (JSC)B5(2):73-106, February 2003.

Chao Wang, Bing Li, HoonSang Jin, Gary D. Hachtel, and
Fabio Somenzi. Improving Ariadne’s Bundle by Following
Multiple Threads in Abstraction Refinement. Pmoceedings

of the International Conference on Computer Aided Design
(ICCAD), pages 408-415, November 2003.

Jesse P. Whittemore, Joonyoung Kim, and Karem A. Sakallah.

SATIRE: A New Incremental Satisfiability Engine. FPro-
ceedings of th&8" Design Automation Conference (DAC)
pages 542-545, June 2001.

Poul F. Williams, Armin Biere, Edmund M. Clarke, and Anub-
hav Gupta. Combining Decision Diagrams and SAT Proce-
dures for Efficient Symbolic Model Checking. In E. Allen
Emerson and A. Prasad Sistla, editoPspceedings of the
120 International Conference on Computer Aided Verification
(CAV), volume 1855 ofLecture Notes in Computer Science
pages 124-138. Springer, July 2000.

Chia-Chih Yen, Kuang-Chien Chen, and Jing-Yang Jou. A
Practical Approach to Cycle Bound Estimation for Property

106.

107.

Pruning Techniques for the SAT-basedqgg.

109.

Checking. InProceedings o1 International Workshop on
Logic & Synthesis (IWLSpages 149-154, June 2002.

Hantao Zhang. SATO: An Efficient Propositional Prover. In
William McCune, editorProceedings of the4h International
Conference on Automated Deduction (CADE)Jume 1249 of
Lecture Notes in Computer Scienpages 272-275. Springer,
July 1997.

Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and
Sharad Malik. Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver. IrProceedings of the International Con-
ference on Computer Aided Design (ICCAPages 279-285,
November 2001.

Lintao Zhang and Sharad Malik. The Quest for Efficient
Boolean Satisfiability Solvers. In Ed Brinksma and Kim G.
Larsen, editorsProceedings of the4" International Confer-
ence on Computer Aided Verification (CAVdlume 2404 of
Lecture Notes in Computer Sciengmges 17-36. Springer,
July 2002.

Lintao Zhang and Sharad Malik. Towards Symmetric Treat-
ment of Conflicts And Satisfaction in Quantified Boolean Sat-
isfiability Solvers. In Pascal Van Hentenryck, editerpceed-
ings of8!" International Conference on Principles and Prac-
tice of Constraint Programming (CPYyolume 2470 of_ecture
Notes in Computer Scienggages 200-215. Springer, 2002.
Lintao Zhang and Sharad Malik. Validating SAT Solvers us-
ing an Independent Resolution-based Checker: Practical Im-
plementations and Other Applications. Pnoceedings of the
Design Automation and Test in Europe (DATBages 880—
885, March 2003.

