
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

A Survey of Recent Advances in
SAT-Based Formal Verification
Mukul R Prasad1, Armin Biere 2, Aarti Gupta 3

1 Fujitsu Labs. of America, Sunnyvale, CA, USA
2 Johannes Kepler University, Linz, Austria
3 NEC Labs. America, Princeton, NJ, USA

The date of receipt and acceptance will be inserted by the editor

Abstract Dramatic improvements in SAT solver technology
over the last decade, and the growing need for more effi-
cient and scalable verification solutions have fueled research
in verification methods based on SAT solvers. This paper
presents a survey of the latest developments in SAT-based
formal verification, including incomplete methods such as
bounded model checking, and complete methods for model
checking. We focus on how the surveyed techniques formu-
late the verification problem as a SAT problem, and how they
exploit crucial aspects of a SAT solver, such as application-
specific heuristics and conflict-driven learning. Finally, we
summarize the noteworthy achievements in this area so far,
and note the major challenges in making this technology more
pervasive in industrial design verification flows.

Key words: Verification, SAT, Model Checking, QBF, ATPG

1 Introduction

Functional verification of digital hardware designs has be-
come one of the most expensive and time-consuming com-
ponents of the current product development cycle. Symbolic
model checking based on BDDs [22,72] have come a long
way since their introduction more than a decade ago. How-
ever, they are still incapable of handling the largest problems
encountered in current industrial practice. Reduction in fea-
ture size coupled with the recent move towards IP-based de-
sign has led to dramatic increases in the size and complex-
ity of systems that are being designed, thereby posing new
challenges for functional verification methods. Hence there
is a growing need to investigate and develop more robust and
scalable verification methods based on novel and alternative
technologies.

Verification methods based on SAT solvers have recently
emerged as a promising solution. Dramatic improvements in

SAT solver technology over the past decade have led to the
development of several powerful SAT solvers [45,71,77,105].
Verification methods based on these solvers have been shown
to push the envelope of functional verification in terms of
both capacity and efficiency, as reported in several academic
and industrial case studies [4,16,19,31]. This has fueled fur-
ther interest and intense research activity in the area of SAT-
based verification.

This paper surveys the recent developments in SAT-based
formal verification techniques and methodologies. The work
surveyed falls primarily in the category of property verifica-
tion or model checking methods since such has been the fo-
cus of most recent works on SAT-based verification. For other
verification applications of SAT methods, such as combina-
tional equivalence checking, the interested reader is referred
to [47,68].

Additionally, there is an interesting body of work based
on applying SAT to richer types of specifications and log-
ics, which, due to lack of space can not be covered in this
short survey. Here is a list of recent relevant topics, which
may serve as a starting point for the interested reader: quanti-
fier free fragments of first order logic [9,87,100], Presburger
Arithmetic [97], monadic second order logic [6], object ori-
ented software specifications [60].

1.1 Organization

The survey is organized as follows. Section 2 briefly reviews
the SAT problem, basic SAT algorithms and advanced fea-
tures of modern SAT solvers, and model checking. Section 3
discusses work onbounded model checking (BMC)includ-
ing ways of strengthening SAT-based BMC with BDD-based
analysis and several industrial case studies comparing SAT-
BMC with traditional BDD-based symbolic model checking.
Section 4 reviews techniques that implement complete meth-
ods for model checking based on state-space search, inductive
reasoning and abstraction-refinement.

2 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

Recently there have been some successful attempts at us-
ing sequential ATPG tools for model checking. These are sur-
veyed in Section 5. Another recent development has been the
use ofQuantified Boolean Formulae (QBF)solvers, a gen-
eralization of SAT, to solve model checking problems. The
state-of-the-art in QBF solving and its applications to verifi-
cation are discussed in Section 6. We conclude the paper in
Section 7 with a summary of the major achievements in SAT-
based verification to date and some thoughts on the future
prospects and challenges for SAT-based verification.

2 Background

2.1 The Boolean Satisfiability Problem

The Boolean Satisfiability (SAT) problem is a well-known
constraint satisfaction problem, with many applications in the
fields of VLSI Computer-Aided Design and Artificial Intelli-
gence. Given a propositional formulaϕ, the Boolean Satis-
fiability problem posed onϕ is to determine whether there
exists a variable assignment under whichϕ evaluates to true.
Such an assignment, if it exists, is called asatisfying assign-
ment for ϕ and ϕ is calledsatisfiable. Otherwiseϕ is said
to be unsatisfiable. The SAT problem is known to be NP-
Complete [42]. However, in practice, there has been tremen-
dous progress in SAT solvers technology over the years, sum-
marized in a recent survey [107]. Earlier work in the context
of theorem proving is covered in [63].

Most SAT solvers use aConjunctive Normal Form (CNF)
representation of the Boolean formula. In CNF, the formula
is represented as a conjunction of clauses, each clause is a
disjunction of literals, and a literal is a variable or its nega-
tion. Note that in order for the formula to be satisfied, each
clause must also be satisfied,i.e., evaluate to true. There ex-
ist polynomial algorithms (e.g., [81,98]) to transform an ar-
bitrary propositional formula into asatisfiability equivalent
CNF formula that is satisfiable if and only if the original for-
mula is satisfiable. Similarly a Boolean circuit may be en-
coded as a satisfiability equivalent CNF formula using the
method of [65]. Alternatively, for SAT applications arising
from the circuit domain, the SAT solver may be modified to
work directly on the Boolean circuit representation.

2.2 SAT Solvers

Most modern SAT solvers are based on theDavis-Putnam-
Logemann-Loveland (DPLL) algorithm[32,33], which per-
forms a branching search with backtracking. The DPLL al-
gorithm is sound and complete,i.e., it finds a solution if and
only if the formula is satisfiable. In this section, we summa-
rize the main features of modern DPLL-based SAT solvers.
This provides the context for enhancements targeted at veri-
fication applications, discussed in the rest of the paper.

Probabilistic SAT solvers, including WALKSAT [85] and
GSAT [86], are based on stochastic local search instead of

sat-solve()

if preprocess() = CONFLICT then

return UNSAT;

while TRUE do

if not decide-next-branch() then

return SAT;

while deduce() = CONFLICTdo

blevel⇐ analyze-conflict();

if blevel= 0 then

return UNSAT;

backtrack (blevel);

done;

done;

Figure 1. DPLL-based SAT Solver

DPLL. They have their strength on random SAT instances,
but in practice do not work well on structured instances ob-
tained from real verification problems.

The basic skeleton of DPLL-based SAT solvers is shown
in Figure 1, adapted from the GRASP work [71]. The initial
step consists of some preprocessing, during which it may be
discovered that the formula is unsatisfiable. The outer loop
starts by choosing an unassigned variable, and a value to as-
sign to it (decide-next-branch). If no such variable exists,
a solution has been found. Otherwise, the variable assign-
ments deducible from this decision are made (using deduce),
through a procedure calledBoolean Constraint Propagation
(BCP). It typically consists of iterative application of theunit
clause rule, which is invoked whenever a clause becomes a
unit clause,i.e., all but one of its literals are false and the re-
maining literal is unassigned. According to the rule, the last
unassigned literal isimpliedto be true – this avoids the search
path where the last literal is also false, since such a path can-
not lead to a solution. Aconflict occurs when a variable is
implied to be true as well as false. If no conflict is discov-
ered during BCP, then the outer loop is repeated, by choosing
the next variable for making a decision. However, if a con-
flict does occur,backtrackingis performed within an inner
loop in order to undo some decisions and their implications.
If all decisions need to be undone (i.e., the backtracking level
blevel is 0), the formula is declared unsatisfiable since the
entire search space has been exhausted.

The original DPLL algorithm used chronological back-
tracking,i.e., it would backtrack up to the most recent deci-
sion, for which the other value of the variable had not been
tried. However, modern SAT solvers useconflict analysistech-
niques (shown as (analyze-conflict) in the figure), to analyze
the reasons for a conflict. Conflict analysis is used to per-
form conflict-driven learningandconflict-driven backtrack-
ing, which were incorporated independently in GRASP [71]
and rel-sat [11]. Conflict-driven learning consists of adding
conflict clausesto the formula, in order to avoid the same con-
flict in the future. Conflict-driven backtracking allows non-

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 3

Implication Graph

Clauses:
C1: x1’+ x2 + x6
C2: x2 + x3 + x7’
C3: x3 + x4’+ x8
C4: x1’+ x6’+ x5’
C5: x6’+ x7+ x8’+ x9’
C6: x5 + x9 + x10
C7: x9 + x10’

Conflict Clause C8:
x1’+ x2 + x3 + x8’

Due to conflict
(x10, x10’)

Conflicting
Nodes

x1

x2’

x3’

x8

x5’

x6

x7’
x9’

x10

x10’

C1

C1

C2

C2

C4

C4

C5

C5

C5

C6

C6

C7

x4

C3

C3

Cutset

Figure 2. Conflict Analysis using an Implication Graph

chronological backtracking,i.e., up to the closest decision
which caused the conflict. These techniques greatly improve
the performance of the SAT solver on structured problems.

The essential component of conflict analysis is animpli-
cation graph[71,106], which captures the current state of
the SAT solver. A small example of an implication graph
is shown in Figure 2, where the original SAT problem con-
sists of clausesC1−C7, as shown on the left. In an impli-
cation graph, nodes represent assignments to variables. For
example, nodex1 representsx1= 1, and nodex5′ represents
x5= 0.

Edges in an implication graph represent clauses, which
cause implications due to source nodes on sink nodes. For
example, whenx1= 1 andx2= 0, clauseC1 causes an im-
plication x6= 1. This is shown as two edges – betweenx1
andx6, and betweenx2′ andx6 – both marked with clause
C1 as shown. Nodes with no incoming edges, such asx1,
denote decision assignments (shown as white nodes in the
figure). A conflict is indicated when there are two nodes in
the graph with opposite values assigned to the same vari-
able. In this example, a conflict is indicated by nodesx10
andx10′, which are called conflicting nodes. Conflict anal-
ysis takes place by following back the edges from the con-
flicting nodes, up to any edge cutset which separates the con-
flicting nodes from the decision nodes. An example cutset is
shown by the dashed line in the figure. A conflict clause is
derived from the variables feeding into the chosen cutset to
capture the reasons for the conflict. It also corresponds to a
resolution on all the clauses associated with the edges tra-
versed up to the cutset. In this example, conflict clauseC8 is
derived as shown, corresponding to the observation that a par-
tial assignment(x1= 1,x2= 0,x3= 0,x8= 1) always leads
to a conflict. For conflict-driven learning, the derived clause
C8 is added to the clause database in order to avoid the same
conflict in the future.

Many other advances have been made in these basic com-
ponents which comprise the DPLL-based SAT solver – deci-

sion engine (heuristics for choosing decision variables and
values), deduction engine (data structures and heuristics for
performing BCP and detecting conflicts), diagnosis engine
(heuristics for conflict-driven learning). Some of these are de-
scribed in the remainder of this section.

2.2.1 CNF-based SAT Solvers

An interesting property of CNF representations was first ex-
ploited by Zhang in the SATO SAT solver [105], to improve
the performance of BCP. It proposed the use of head and tail
pointers to point to non-false literals in the list representa-
tion of a clause, and maintained thestrong invariantthat all
literals before the head pointer, and all literals after the tail
pointer, are false. Clearly, detection of a unit clause during
BCP becomes easy,i.e., when the head and tail pointers co-
incide on an unassigned literal. The main advantage is that
the clause status is updatedonly when either of the head/tail
literals is assigned a false value during BCP. In particular,
this eliminates an update when any of the other literals in the
clause is assigned a value. When the head/tail literal is as-
signed a false value during BCP, the associated pointer needs
to be moved to another non-false literal if it exists. This is fa-
cilitated by the strong invariant. However, during backtrack-
ing, the head/tail pointers may need to be moved back again,
in order to maintain the strong invariant.

A different tradeoff was proposed by Moskewiczet al. in
the Chaff SAT solver [77]. Its BCP scheme, known astwo lit-
eral watching with lazy update, is also based on tracking only
two literals per clause during BCP. However, Chaff maintains
a weak invariant, whereby the two watched literals are re-
quired to be non-false, but there is no ordering requirement
with respect to other false literals. Again, detection of a unit
clause during BCP is easily performed by checking whether
both watched pointers coincide, and whether clause updates
on assignment to other literals are eliminated. Note that due to
the weaker invariant, more work than SATO may be required
during BCP, to search for a non-false literal when one of the
two watched literals is assigned a false value. However, the
weaker invariant ensures that no additional work is required
during backtracking. This tradeoff has been shown to work
better in practice.

Chaff also proposed a useful decision heuristic that prior-
itizes the literals that appear in recent conflict clauses. Recall
that conflict clauses are added due to conflict-driven learning,
which is very beneficial for SAT solvers on structured prob-
lems. This was taken a step further by Goldberg and Novikov
in the BerkMin SAT solver [45], which prioritizes all liter-
als involved in the conflict analysis, and not just those that
appear in the conflict clause. The performance improvement
due to these decision heuristics is additional testament to the
importance of conflict-driven learning in practice.

More recently, additional information recorded during con-
flict analysis has been used very effectively to provide a proof
when a formula is determined to be unsatisfiable by the SAT
solver. This proof can be independently checked to verify
the SAT solver itself [46,109]. These techniques can also be

4 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

easily adapted to identify a subset of clauses from the origi-
nal problem, called theunsatisfiable core[109,75], such that
these clauses are sufficient for implying unsatisfiability. The
use of such techniques in verification applications are de-
scribed in more detail in Section 4.

2.2.2 Circuit-based SAT Solvers

SAT has many applications in the logic circuit domain, such
as automatic test pattern generation (ATPG), verification, tim-
ing analysis,etc.The Boolean reasoning problem is typically
derived from the circuit structure. This has also led to interest
in circuit-based SAT solvers [38,44,64]. These work directly
on the circuit structure, and use circuit specific heuristics to
guide the search. In general, attempts to include circuit struc-
ture information into CNF-based SAT solvers have been un-
successful due to significant overhead.

Among verification applications, recently Kühlmannet
al. [64] focused on SAT techniques for a simple, uniform
gate-level representation of circuits, and their integration with
other useful techniques like BDD sweeping and dynamic cir-
cuit transformation. Circuit-based BCP is performed by a sin-
gle table lookup per gate, in contrast to CNF-based updates
for potentially three equivalent clauses. This improves the
BCP performance. However, there is no effective way to per-
form conflict-driven learning. The bottleneck is that conflict
clauses correspond to largeOR-treecircuits.

2.2.3 Hybrid SAT Solvers

More recently, there has been an effort by Ganaiet al. [41] to
combine the relative benefits of CNF-based and circuit-based
SAT solvers. In particular, their hybrid SAT solver incorpo-
rates efficient circuit-based BCP techniques, along with con-
flict analysis techniques of CNF-based solvers. The original
circuit problem is represented as a simple gate-level netlist,
while the learned conflict clauses are represented in CNF.
The BCP engine consists of table lookups for the gates, and a
Chaff-style two-literal watching scheme for conflict clauses.
Note that since the clauses for a simple gate are short clauses
(3-literals or less), a single table lookup is cheaper than mul-
tiple clause updates. On the other hand, since conflict clauses
tend to be much longer, a two-literal watching scheme (which
avoids multiple updates) is more useful than multiple table
lookups for its many literals. This enables consistent speedups
in the BCP performance. Their hybrid representation of the
Boolean problem allows exploitation of both circuit-based
and CNF-based decision heuristics.

Another effort by Luet al. [69] used these ideas along
with additional conflict-driven learning, in order to improve
the SAT solver performance. The idea is to use cheaper meth-
ods (such as simulation) to find candidate pairs of co-related
signals in the given circuit. Then the inequivalence of the
co-related signals is added as a constraint to the SAT prob-
lem. Since this constraint is likely to be conflicting, it pro-
vides additional opportunities for the SAT solver to perform

conflict-driven learning, which can potentially improve its
performance on larger problems.

2.3 Model Checking

With the introduction ofbounded model checking[15] it be-
came clear that SAT can be used formodel checking[27].
One can even argue, that currently one of the main driving
forces behind SAT research is its application to model check-
ing. The purpose of this section is to give a short overview on
the history and terminology of model checking. More details
can be found in the text book [28] or the survey [30].

The target of model checking is the verification of se-
quential properties of dynamic systems. A dynamic system
has a state component which changes over time. Typical sys-
tems are sequential circuits, which contain delay elements,
such as flip-flops and latches. Verification of sequential cir-
cuits is also the main application area of this survey.

Model checking, in the first place, is only applicable to
finite systems. However, if suitablefinite abstractionscan be
found, then some classes of infinite systems can be checked
as well. Applications of infinite model checking are real-time
systems, modeled as timed automata [3], or even system soft-
ware [8]. Further, model checking has also been applied suc-
cessfully in the context of telecommunication protocols and
cache coherence protocols. It must be noted, that SAT has
mainly been used for model checking sequential circuits. How-
ever, it is apparent that the verification of more general sys-
tems can also benefit from SAT technology.

Sequential properties are usually represented in tempo-
ral logic [36]. Formulas of temporal logic try to express sys-
tem behavior over time. There are various variants of tem-
poral logic, such asLinear Temporal Logic (LTL)or Com-
putation Tree Logic (CTL), which usually require dedicated
algorithms. In this paper we focus onsimple safety proper-
ties, also often called invariants, written in CTL asAGp. This
formula specifies, that for all executions paths, globally in all
states along the path, the propertyp holds. Alternatively, it
states the property that¬p, read asnot p, which could be
some catastrophic system state, can not be reached. Note that
for finite systems, many practically relevant properties can be
translated into simple safety properties [84].

Originally [27] model checking used an explicit represen-
tation of states. A typical implementation [55] of this type
of explicit model checkingstores individual states in a large
hash table, memorizing the states reached during a depth first
traversal of the state space. Since the number of states of even
small systems can be very large,e.g., a 128 bit shift register
has 2128states, this method does not scale, in particular for se-
quential circuits. One solution to this so calledstate explosion
problemis symbolic model checking[72], which operates on
sets of states instead of individual states and represents sets
of states symbolically in a compact form.

In the past, Binary Decision Diagrams (BDDs) [21] and
variants have frequently been used as representation for sets
of states. They also allow efficient computation of Boolean

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 5

model-checkµforward (I , T, B)

SC = /0; SN = I ;

while SC 6= SN do

SC = SN;

if B∩SC 6= /0 then

return “found error trace to bad states”;

SN = SC∪ Img(SC);
done;

return “no bad state reachable”;

Figure 3. Forward least fixpoint algorithm for safety properties

operations. In particular BDDs allow an efficient implemen-
tation of the image operationImg, which lies at the core of
the breadth first search in symbolic model checking. It calcu-
lates the states reachable in one step via the transition rela-
tion T from the current set of statesSC, by implicitly conjoin-
ing the BDD representingSC with the BDD representingT
and projecting the result onto the next state variablesY (after
eliminating the current state variablesX and primary input
variablesW).

Img(Y)≡ ∃X,W. SC(X)∧T(X,Y,W) (1)

In the context of circuits, we additionally assume that the
transition relation is deterministic. As shown above, it may
however depend on primary inputs, encoded by a vectorW
of Boolean variables, which also need to be quantified during
image computation. In the terminology of program verifica-
tion, Img calculates the strongest post condition of a given
predicate.

A basic algorithm for symbolic model checking simple
safety properties can then be formulated as in Figure 3. It
represents sets of states symbolically, and searches in breadth
first order from the initial states to the bad states. LetB be the
set of bad states, in whichp does not hold, andI the set of
initial states.

This forward model checkingalgorithm, starts at the ini-
tial states and searches forward along the transition relation.
In the literature one can also findbackward model checking
algorithms. They rely on a dual operation to theImg opera-
tion PreImg, or equivalently the CTL operatorEX. It calcu-
lates the set of previous statesSP that may reach the given set
of current statesSC in one step:

PreImg(X)≡ ∃Y,W. SC(Y)∧T(X,Y,W)

A backward model checkingalgorithm can be obtained from
the forward algorithm by, in essence, exchangingB with I
and Img with PreImg. In practice, forward traversal usually
is much faster [58,57,54,17]. The reason may be, that un-
reachable states do not have to be visited and BDDs behave
much better. However, not all temporal properties, for in-
stanceEXp∧EXq or AG EX p, can be handled withImg
computation only. In certain cases backward traversal is bet-
ter. For instance, if the propertyp is an inductive invariant,

model-checkνbackward(I , T, G)

SC = “all states”;SP = G;

while SC 6= SP do

SC = SP;

SP = SC∩AX(SC);
done;

if I ⇒ SC then return “only good states reachable”;

else return “found error trace to bad states”;

Figure 4. Backward greatest fixpoint algorithm for safety properties

as defined in Section 4.2. In this case the backward fixpoint
computation terminates after onePreImgcomputation. A gen-
eral strategy is to try backward and forward traversal in par-
allel.

Both symbolic model checking algorithms presented so
far can be interpreted as calculating a least fixpoint [22]. Dual
formulations exist for greatest fix points. For backward traver-
sal, the CTL operatorAX (also known as the weakest pre
condition operatorwp) replacesPreImg:

AX(X)≡ ∀Y,W. T(X,Y,W)→ SC(Y)

It calculates the set of previous statesSP that lead to a state in
the current set of statesSC, independent of the values at the
primary inputs. A backward model checking algorithm for
simple safety properties, based on greatest fix point calcula-
tion and on theAX operator, can be formulated as in Figure 4.
Here,G denotes the set ofgood states, i.e., the states in which
p holds.

SAT technology can be used for implementing all parts of
these algorithms. One option is to unroll the loop in model-
checkµforward only a finite number of times, omitting the ter-
mination checks. This, in essence, is the main idea behind
bounded model checking, the topic of the next section. We
will come back to backward traversal calculating greatest fix
points in Section 4.1.2.

3 Bounded Model Checking

Bounded Model Checking based on SAT methods was in-
troduced by Biereet al. in [14,15,26] and is rapidly gain-
ing popularity as a complementary technique to BDD-based
symbolic model checking. Given a temporal logic property
P to be verified on a finite transition systemM, the essential
idea is to search for counter-examples toP in the space of all
executions ofM whose length is bounded by some integerk.

The problem is formulated by constructing the following
propositional formula:

ϕk = I ∧
k−1̂

i=0

Ti ∧ (¬P k) (2)

where I is the characteristic function for the set of initial
states ofM, Ti is the characteristic function of the transition

6 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

P

P

P

I T T
’1’g

 T1 2 k

Figure 5. Bounded Model Checking

relation ofM for time stepi. Thus, the formulaI ∧
Vk−1

i=0 Ti

precisely represents the set of all executions ofM of length
k or less, starting with a legal initial state.¬P k is a formula
representing the condition thatP is violated by a bounded
execution ofM of lengthk or less. Hence,ϕk is satisfiable if
and only if there exists an execution ofM of lengthk or less
that violates propertyP . ϕk is typically translated to CNF and
solved by a conventional SAT solver.

The formula¬P k may be used to express both safety and
liveness properties. Liveness properties of the formAFp are
checked by having¬P k represent a loop within a bounded
execution of length at mostk, such thatp is violated on each
state in the loop. However, the more common application of
BMC is for the purpose of checking safety properties of the
form AGp (p is some propositional expression). In this case
expression (2) reduces to:

ϕk = I ∧
k−1̂

i=0

Ti ∧ (
k_

i=0

¬Pi) (3)

wherePi is the expressionp in time stepi. Thus, this formula
can be satisfied if and only if for somei (i ≤ k) there exists
a reachable state in time stepi in which p is violated. Fig-
ure 5 shows a circuit representation of this equation, where
the blockP denotes a combinational circuit block computing
¬Pi as a function of the state variables of time stepi.

A typical application of BMC consists of iteratively exe-
cuting the above formulation for increasing values ofk until
either a property violation is discovered or some user speci-
fied limit onk or the computing resources (memory, runtime)
is exceeded.

Recent research has improved upon both the technology
and methodology of the basic BMC method described above
in several ways. These improvements are discussed below.

3.1 Structural Pruning during CNF Generation

Many techniques use some kind of structural processing to
generate a more compact CNF for the BMC problem, with
the hope that the resulting SAT problem is easier for the SAT
solver to solve.

Thebounded cone of influence (BCOI)reduction [16] is
an improvement on the classicalcone of influence (COI)re-
duction used in traditional model checking. The intuition is
that over a bounded time interval we need not consider every
state variable in the classical COI at every time step. Specifi-
cally, in Figure 5, the BCOI reduction would extract the tran-
sitive fanin cone of the gateg and construct the BMC-CNF

only from this sub-circuit. In our experience the BCOI reduc-
tion is cheap and easy to apply and can occasionally provide
significant improvements over the simple COI reduction.

Ganaiet al.[39] use binary AND-INVERTER graphs [64]
to represent the transition relation of the system as well as
the unrolled transition relation used for the BMC problem
(Figure 5). The graph is compressed, as it is built, by using
an efficient functional hashing scheme across two levels of
logic, as well as term re-writing techniques. The CNF for the
BMC problem is generated from this compressed representa-
tion. SAT results from earlier BMC runs are used to set ap-
propriateP nodes (Figure 5) to 0 and then re-hash the circuit
graph to obtain further compression. Such techniques work
extremely well in practice especially if the logic level circuit
used for the verification has been generated through a quick
on-the-fly synthesis from an RTL description.

3.2 Decision Variable Ordering of the SAT solver

Variable ordering has long been recognized as a key determi-
nant of the performance of SAT solvers. The earliest works
on SAT-BMC were based on SAT solvers such as GRASP
and SATO which used variable ordering heusristics such as
theDLISheuristic [70]. Strichman [95] proposed a static vari-
able ordering scheme specifically targeted for BMC problems
which improved upon the default DLIS ordering. The static
order was generated from a BFS-like traversal of the unrolled
circuit graph used for BMC.

However, recent results [88] show that the conflict-driven
variable ordering heuristics used in modern SAT solvers (e.g.,
the VSIDS heuristic in zchaff [77]) outperform anyfully static
BMC-specific variable ordering scheme, such as the one pro-
posed in [95]. A slight tuning of these heuristics for the BMC
problem [88] can further enhance the performance. On the
other hand, BMC tools using circuit-based SAT solvers,e.g.,
[41,59,64] essentially use some variant of theJ-frontier jus-
tificationheuristic popularly used in sequential ATPG tools.

While the above heuristics work fairly well for a SAT
solver in a BMC setting, they do not specifically exploit any
key aspects of the BMC problem to customize and target the
SAT search for BMC. Since the SAT solver’s runtime dom-
inates the overall performance of the BMC tool, this topic
could be an interesting avenue for future research.

3.3 Addition of Constraints to the SAT problem

The technique of learningconflict clausesduring search has
dramatically enhanced the efficacy of modern SAT solvers.
Motivated by this, several other specialized static and dy-
namic learning techniques have been developed for the BMC
problem. The learned constraints can be added as CNF clauses
to the SAT problem being solved, with the hope of speeding
up the solution process.

The technique ofconstraints sharing[96] proposed by
Strichman is based on the observation that since BMC is an
iterative process whereby the problem is repeatedly solved

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 7

P

P

P

I T T T
’1’

’1’

R+

’1’

R+

’1’

+R

21 k

Figure 6. Improving BMC Using Reachability Over-approximation

for increasing values of the boundk, conflict clauses learned
by the SAT solver in one run can potentially be used for
subsequent runs instead of having to re-learn them. Specif-
ically, any conflict clause derivedexclusivelyfrom the sub-
formulaΦk = I ∧

Vk−1
i=0 Ti can be re-used (i.e., added a-priori

to the CNF) in future BMC runs with higher values ofk. This
technique is a specific instance ofincremental satifiability
techniques, with applications in BMC [92] and other general
classes of SAT problems [61,102]. Generally, this technique
has been found to offer speed-ups of upto 2× or more with
negligible overhead.

A related technique calledconstraints replication[95] first
identifies conflict clausesc, derived from the sub-formulaVk−1

i=0 Ti alone, and creates new clauses by replacing literals of
c by their time-frame shifted versions, which are then added
a priori to CNFs of subsequent BMC runs. This technique is
not very effective in practice, mainly due to the large over-
head caused by addition of too many replicated clauses.

Recent work by Guptaet al. [49] proposed learning con-
flict clauses from BDDs, and adding them dynamically to
the problem during the SAT search. The learned clauses cor-
respond to paths to the′0′ terminal in a BDD representa-
tion, denoting unsatisfiable assignments on the path variables.
These BDDs are created on-the-fly for heuristically selected
small regions (i.e., sub-circuits) in the unrolled design for
BMC. They proposed several heuristics to keep the overhead
low, while increasing the usefulness of the added clauses, and
demonstrated significant speedups in BMC performance.

Another technique that draws upon BDD technology is
the work of Cabodiet al. [23]. The basic idea is to use BDD-
based approximate reachability analysis toquicklycompute a
succinctand coarse over-approximation,R+ of the reachable
state-space of a design. The BDD representing the character-
istic function ofR+ is then asserted as constraints on the tran-
sition boundary between each successive pair of time-frames
i, i+1, as shown in Figure 6. The BDDs are converted to CNF
constraints which are conjoined with the BMC formulation of
Equation 2. This technique does indeed have an overhead and
is therefore useful primarily for larger, more difficult BMC
problems. In such cases speed-ups of upto an order of mag-
nitude have been observed.

3.4 Methodology Improvements to BMC

Although, BMC is by its intent an incomplete, bug-finding
method rather than a complete verification method, a given
property can be certified to be true if no counter-examples
are found through BMC, upto thesequential depthof the
circuit[15]. The sequential depth of a circuit is length of the
longestof the shortest-paths from the initial state(s) to other
reachable states of the system.

There have been a few attempts at computing or estimat-
ing the sequential depth of a circuit, to use as a target depth
for BMC. Yenet al. [104] proposed a heuristic method based
on a sampling of the state-space through random simulation.
However, since the method can report an under-approximation
or an over-approximation of the true sequential depth it does
not provide a viable solution. Mneimneh and Sakallah [76]
formulate the problem as a logical inference problem on Quan-
tified Boolean formulas (QBF) (see also Section 6) and present
a SAT-based procedure for solving the generated QBF. Un-
fortunately, this technique although precise, does not offer
a scalable solution. Baumgartneret al. [10] present a struc-
tural approach based on traversing the circuit netlist to iden-
tify components with known sequential depth and using these
to compute the overall sequential depth. Despite the above at-
tempts, the problem of efficiently computing or tightly over-
approximating the sequential depth of industrial size, arbi-
trary sequential circuits largely remains an open problem.

It is well known that different propositional encodings of
the same problem can result in dramatically different run-
times on a given SAT solver. The approach ofBinary Time-
frame Expansionproposed by Fallah [37] provides a different
propositional encoding of the check for violation of the prop-
erty in various time-frames of an unrolled circuit. The pro-
posed encoding has been demonstrated to improve the SAT
solver runtimes over the traditional formulation of Eq. 2 pro-
vided the BMC instance is sufficiently deep (typicallyk ≥
100).

3.5 Industrial Application of BMC

Several successful attempts at applying SAT-based BMC tech-
nology to industrial problems have been reported over the
past few years. The original proponents of BMC reported a
case study [16] where they applied BMC based on the SAT
solvers SATO [105] and GRASP [71] to verify safety prop-
erties on 5 control units from thePowerPCTM microproces-
sor. BMC was found to significantly outperform the BDD-
based CMU SMV model checker for several of the bench-
marks. Bjesseet al. [19] reported a significant increase in
bug-finding speed and efficiency by their application of SAT-
BMC (based on GRASP and CAPTAIN PROVE [90] SAT
solvers), to check safety properties in the memory sub-system
of the Alpha microprocessor.

A recent comprehensive analysis with respect to the per-
formance and capacity of BMC is presented in [31]. The au-
thors compare Intel’s BDD-based model checker,Forecast

8 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

(adapted for BMC) with a SAT-based BMC tool,Thunderon
several benchmarks taken from Intel’s Pentium 4 processor.
Their evaluation yields an interesting tie between the perfor-
mance ofuntunedThunder andtunedForecast. They con-
clude that the real productivity gains from SAT-based BMC
are obtained by obviating the need for user ingenuity and tun-
ing effort that would be needed to obtain acomparableper-
formance from a BDD-based BMC. They also report success
in using SAT-based BMC on large benchmarks, that are well
beyond the capacity of BDD-based tools.

A more recent study [4] compares the performance of
BDD-based, SAT-based and explicit state BMC on a wide
variety of industrial property checking benchmarks includ-
ing both safety and liveness properties on hardware and soft-
ware designs. Interestingly, they conclude that SAT-BMC is
most effective at finding bugs at shallow depths (< 50) while
BDD-based methods should be the method of choice for find-
ing deep counter-examples. They also find that explicit-state
BMC based on random simulation can give comparable per-
formance to SAT-BMC in finding shallow, easier bugs for
safety properties.

The general understanding and consensus in the commu-
nity is that SAT-BMC tools require minimal tuning effort and
work particularly well on large designs where bugs need to
be searched at shallow to medium depths. In other instances it
may be possibleto extract comparable or better performance
from BDD-based model checkers or other algorithms.

4 SAT-based Unbounded Model Checking

In this section we describe verification efforts that have used
SAT solvers for unbounded symbolic reachability analysis,
i.e., methods that can prove the correctness of a property on
a design as well as find counter-examples for failing prop-
erties. The method may or may not be complete. The sur-
veyed methods fall into three categories. The first set of tech-
niques have their roots in BDD-based symbolic state space
search where the use of BDDs has been partially or com-
pletely replaced with SAT solvers. The second category com-
prises methods based on inductive reasoning. Inductive tech-
niques are sound but usually incomplete in that they may not
be able to prove every correct property. The third category of
methods are abstraction-refinement frameworks, where SAT-
based BMC is used primarily for abstraction or refinement,
and is supplemented by other techniques for obtaining proofs
on smaller abstract models. These frameworks also provide
completeness, and offer better scalability due to effective use
of abstraction. In principle, completeness can also be achieved
by making the transition from SAT to QBF as is explained in
Section 6.

4.1 SAT-based State Space Search

Due to the success of SAT solvers in bounded model check-
ing, there has been growing interest in their use forunbounded

model checking. Here, the crucial non-trivial operation is quan-
tifier elimination, which converts a QBF to a propositional
Boolean formula. This is shown below for the image opera-
tion, which forms the computational core of symbolic meth-
ods for forward model checking, as explained in Section 2.3.

SN(Y) = ∃X,W,Z. SC(X)∧T(X,Y,W,Z) (4)

In this equation, the variable setsX, Y, W, Z, denote the
present state, next state, input, and internal (needed for a CNF
representation) variables, respectively; andSN, SC, andT de-
note the next states, the current states, and the transition rela-
tion, respectively.

4.1.1 Combination of SAT with Decision Diagrams

Abdulla et al. [1] formulate the checks for property satisfac-
tion and fixpoints as SAT problems, to be solved by standard
SAT solvers. The SAT problems comprise combinations of
formulasS∗, representing sets of states. These are obtained
by using rewriting rules for eliminating the existential quanti-
fier in the image/pre-image operations (shown in Equation 4).
The most effective rule is aninlining rule, which substitutes
an expression for a variable to be quantified; while the most
expensive is rewriting the existential quantification as a dis-
junction, which can result in a size blowup. They useReduced
Boolean Circuits (RBCs)to represent the Boolean formulas,
which can be exponentially more succinct than BDDs, but
are semi-canonical. A similar effort was made by Williamset
al. [103] to use SAT solvers for CTL model checking. They
too used a substitution rule very effectively for elimination of
the existential quantifier. They usedBoolean Expression Di-
agrams (BEDs)[5], which are closely related to RBCs, for
representation of the Boolean formulas,. In addition to using
standard SAT solvers to check satisfiability of BEDs, they
also used the conversion of BEDs to standard BDDs. Since
this conversion can blow up in practice, they used various
heuristics to reduce the size of BEDs.

A different approach was taken by Guptaet al.[52], which
integrates BDD-based techniques tightly into the SAT deci-
sion procedure. They represent the transition relationT in
CNF, and the set of reachable statesS∗ as BDDs. For im-
age computation, quantifier elimination is performed by us-
ing SAT techniques to enumerate all solutions to the CNF
formula, and by projecting each solution on the set of im-
age variables (Y). The search for solutions is also constrained
by the BDD for SP, using a technique calledBDD Bound-
ing, whereby any partial solution in SAT which is inconsis-
tent with the BDD is regarded as a conflict. This technique
is also used effectively to avoid repeating image set solutions
by bounding against the currentSN. They also generate BDD-
based subproblems on-the-fly, under a partially explored path
in SAT. Though their procedure can be used to perform cube
enumeration in SAT alone, the use of BDD subproblems is
highly beneficial in handling large designs. This image com-
putation procedure was enhanced in [51] by adding circuit
structure information to the CNF formula, in order to dynam-
ically detect and remove redundant clauses. Partition-based

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 9

SAT decision heuristics [53] were used to further improve its
performance.

4.1.2 Purely SAT-based Techniques

An approach using purely SAT-based techniques was pro-
posed by McMillan [73], for performing backward symbolic
model checking (see Figure 4 in Section 2.3). It is based
on computing the CNF formula equivalent toAX p, where
p is an arbitrary Boolean formula, by enumerating all satisfy-
ing assignments using a SAT solver. Variables are universally
quantified by simply dropping the associated literals from the
resulting CNF. Note that this forms the dual of projection
for existentially quantified variables in a Disjunctive Normal
Form using cubes, as used by other researchers,e.g., [52,80].
Each satisfying cube is used to derive ablocking clausewhich
contributes to the set of solutions, and is also added to the
current database of clauses in order to avoid repetition of the
solutions. The procedure for deriving a blocking clause ex-
ploits circuit structure information to re-arrange the implica-
tion graph (described in Section 2.2) when a solution (i.e., a
satisfying assignment) is found by the SAT solver. This re-
arrangement can be viewed as acube enlargementtechnique,
which allows a larger solution cube to be captured in each
enumeration by the SAT solver. The overall approach works
well for designs where the sets of states can be represented
compactly in CNF, and where cube enumeration with block-
ing clauses does not blow up.

Another model checking approach based on use of SAT
techniques andCraig interpolantshas been proposed in [74].
Given an unsatisfiable Boolean problem, and a proof of un-
satisfiability derived by a SAT solver, a Craig interpolant can
be efficiently computed to characterize the interface between
two partitions of the Boolean problem. In particular, when
no counterexample exists for depthk in BMC, i.e., the SAT
problem for depthk is found to be unsatisfiable, a Craig in-
terpolant is used to obtain an over-approximation of the set
of states reachable from the initial state in 1 step (or any
fixed number of steps). This provides an approximate image
operator, which can be used iteratively to compute an over-
approximation of the set of reachable states,i.e., till a fixpoint
is obtained. If at any point, the over-approximate set is found
to violate the given property, then the depthk is increased for
BMC, till either a true counterexample is found, or the over-
approximation converges without violating the property. The
main advantage of the interpolant-based method is that it does
not require an enumeration of satisfying assignments by the
SAT solver. Indeed, the proof of unsatisfiability is used to ef-
ficiently compute the interpolant, which serves directly as the
over-approximate state set. In practice too, this method has
been shown to work better than other BDD-based and SAT-
based complete methods. However, if the focus is only on
finding bugs,e.g., falsification, then, in the current version, it
can not be faster than BMC alone.

More recently, a SAT-based quantification technique us-
ing circuit cofactoring has been proposed by Ganaiet al.[40].
They too use a SAT solver to enumerate solutions, but they

use circuit cofactoring after each enumeration to capture a
larger set of new state cubes per enumeration, in compari-
son to cube-wise enumeration techniques. Note that in gen-
eral a cofactor can capture not just a single cube, but several
cubes. This is greatly beneficial in reducing the total number
of solutions enumerated by SAT, sometimes by several orders
of magnitude, in comparison to approaches based on block-
ing clauses (described above). They also use an efficient cir-
cuit graph representation for the solution states [64], which
is more robust than CNF-based or BDD-based representa-
tions, and use a hybrid SAT solver [41] to directly work on
these representations. Ganai et al.’s quantification technique
can be used to compute exact image/pre-image state sets, un-
like the interpolant-based technique (described above) which
computes approximate state sets. It has been used in SAT-
based unbounded symbolic model checking to handle many
difficult industry examples, which could not be handled by
either BDDs or blocking-clause based SAT approaches.

4.2 SAT-based Inductive Reasoning

Inductive reasoning can be a cheap and efficient means of ver-
ifying properties, rather than simply finding counter-examples
as in BMC. Inductive reasoning has previously been used,
with some success, for various verification problems, includ-
ing property checking using technologies such as BDDs. The
inductive proof for verifying a propertyP = AGp can be de-
rived using a SAT solver by checking the formulasφbase(the
base case) andφinduc (the induction step) for unsatisfiability.

φbase= I ∧¬P0 (5)

φinduc = Pk ∧ T(k,k+1) ∧ (¬Pk+1)

If φinduc is unsatisfiable the propertyP is called aninduc-
tive invariant. Both formulas, if unsatisfiable, provide a suffi-
cient (but not necessary) condition for verifyingP . However,
the above form of induction, known assimple induction, is
not powerful enough to verify many properties.

Two recent works [18,89] have proposed the use of more
powerful forms of induction known asinduction with depth
and unique states inductionto verify safety properties. For
induction with depthn the formulas of Equation 5 become:

φn
base= I ∧

(
n−1̂

i=0

T(i, i +1)

)
∧

n_
i=0

¬Pi (6)

φn
induc =

(
k+n̂

j=k

Pj

)
∧

(
k+n̂

i=k

T(i, i +1)

)
∧ ¬Pk+n+1

Essentially, induction with depth corresponds to strength-
ening the induction hypothesis, by imposing the original in-
duction hypothesis (Pk in φinduc, Equation 5) onn consecu-
tive time-frames. This can be further strengthened by requir-
ing that the states appearing on each time-frame be unique

10 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

(unique states induction). This restriction results in a com-
plete method for simple safety properties. However, the in-
duction length may be as long as the recurrence diameter
[15], which in most cases is much longer than the sequential
depth. Further, the number of constraints needed to enforce
the state uniqueness is quadratic in the depth of unrolling,i.e.,
the induction depth, resulting in very large CNFs. In recent
work [35], Eén et al. partly address this issue by proposing
an iterative method for induction. The induction hypothesis
starts off without any uniqueness constraints, which are grad-
ually added in successive iterations till the induction proof
goes through. The efficiency of the method is further im-
proved by using anincremental SATmechanism that allows
sharing of conflict clauses (recorded by the SAT solver) be-
tween successive iterations of induction.

Another variant of this line of research is the work by
Guptaet al. [48], which is similar to the work by Cabodi
et al. [23], discussed in Section 3.3. As in [23], BDD-based
techniques are used toefficientlycompute asuccinctover-
approximationR+ of the reachable states of a design. This is
used to strengthen the induction hypothesis by imposingR+

as an additional reachability invariant. In particular, it con-
strains the state values that are allowed to appear at the start-
ing state of the induction step (or at the interfaces between
each successive pair of time-frames). Note that in contrast
to [23], the constraints here are not redundant, but are added
to strengthen the induction hypothesis, which might be too
weak with the property alone. This frequently allows induc-
tion proofs to go through successfully. A related line of re-
search is based on generating an inductive invariant to be used
as over-approximation for the reachable states in the context
of sequential equivalence checking [18,99,94].

One of the original papers on SAT-BMC [16] had pro-
posed the use of simple induction as a cheap and simple first
pass to apply to all property checking instances before resort-
ing to more comprehensive verification/falsification methods.
The above powerful variants of induction undoubtedly en-
large the range of properties verifiable through inductive rea-
soning. At the same time they can produce very large SAT
formulas which are very resource intensive to solve. Hence
the real utility of these methods would only be brought out by
a good verification methodology that uses them with the right
trade-off between verification power and efficiency, and in the
right balance with BDD-based verification techniques. Re-
cent work by Liet al. [67] points in this direction as well. In
this work the authors use SAT-based unique-states induction
with depth as the model checking method in an abstraction re-
finement framework (discussed in the next section). They ob-
serve that the efficacy of SAT-based induction is considerably
enhanced when used within such a framework. Further, even
within this framework the SAT-based induction exhibits com-
plementary strengths compared to a traditional BDD-based
model checker, underscoring the need for a combined proof
technique.

4.3 SAT-based Abstraction-Refinement Frameworks

In order to handle large designs, there has been a great deal
of interest in the use of abstraction and refinement techniques
for verification. Most efforts are refinement-based approaches,
where starting from a small abstract model of the concrete
design, counterexamples found on these models are used to
refine them iteratively until either a conclusive result is ob-
tained by conservative model checking, or the resources are
exhausted [79]. One of the first attempts to use SAT solvers
for counterexample guided abstraction refinement (CEGAR)
was described by Clarkeet al. [29]. In their approach, the
SAT solver is used to check whether a counterexample trace
found during model checking of the abstract model is spu-
rious or not, by effectively checking its satisfiability on the
concrete design. If it is spurious, ILP (integer linear program-
ming) and machine learning techniques are used to perform
the refinement. In a subsequent effort [25], they used SAT-
based techniques for performing this refinement as well. In
particular, they proposed heuristics using the SAT decision
scores to pick refinement candidates among hidden (abstracted
away) latches. A more interesting technique used ideas simi-
lar to a SAT solver’s proof of unsatisfiability, in order to iden-
tify latches that aresufficientto exclude the spurious coun-
terexample.

Another recent method for counterexample guided ab-
straction refinement has been proposed by Wanget al. [101].
They use BDDs to represent multiple abstract counterexam-
ples, which are checked for satisfiability on the concrete de-
sign using a SAT solver interfaced with BDD constraints [48].
Rather than refining each counterexample individually, they
propose a game-theoretic refinement procedure, that attempts
to exclude multiple counterexamples simultaneously. In prac-
tice, their method performs better than other methods based
on refining a single counterexample at a time.

One reason for the popularity of counterexample guided
abstraction refinement approaches has been a lack of tech-
niques that could extract relevant information from a rela-
tively large concrete design. This is changing now with the
use of proof analysis techniques for SAT solvers. These tech-
niques can be easily used to identify a set of clauses from
the original problem, called theunsatisfiable core[109,75],
such that the clauses are sufficient for implying unsatisfia-
bility. These unsatisfiable cores form the basis of two re-
cent independent efforts on abstraction methods using SAT-
based BMC [75,50]. In both methods, an abstract model is
obtained from the unsatisfiable core, identified from an un-
satisfiable BMC instance at depthk. This abstract model has
the useful property that it does not have any counterexam-
ples of depth less than or equal tok. The basis for abstrac-
tion is the intuition that afterk is large enough, the corre-
sponding abstract model may exclude counterexamples of all
lengths. The usefulness of the abstraction stems from the em-
pirical evidence that for typical verification applications, the
unsatisfiable cores and the corresponding abstract models are
much smaller than the concrete designs. There are minor dif-
ferences in the abstraction methods used by these two ap-

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 11

proaches – McMillan and Amla use a gate-level abstraction,
while Guptaet al.use a latch-level abstraction. However, the
major differences are in their application settings.

In McMillan and Amla’s approach, a proof of correctness
is attempted for the abstract model derived from BMC on the
concrete design itself. If a counterexample is found, the BMC
depthk is increased, till either a true counterexample is found
on the concrete design, or correctness of the derived abstract
model is proved. They demonstrated many successful appli-
cations of their approach on various benchmark examples.
However, this approach runs into scalability problems if ei-
ther the abstract model is too large for unbounded verifica-
tion, or SAT-based BMC cannot be completed on the concrete
model at the increased depthk.

In contrast, the approach by Guptaet al. [50] proposes
an iterative abstractionframework, which is targeted at iter-
atively reducing the size of the abstract models, starting from
the concrete model. In each iteration, BMC is performed for
increasing depths on the chosen model. If there is no coun-
terexample (up to some heuristically chosen depth), a proof-
based abstraction procedure is used to abstract the model fur-
ther for the next iteration. In this framework, a proof of cor-
rectness on an abstract model in any iteration, guarantees cor-
rectness on the concrete design. On the other hand, a coun-
terexample may require a refinement (if it is spurious), based
on either the specific counterexample, or a deeper BMC anal-
ysis on a less abstract model from a previous iteration. In
practice, the abstraction loop is iterated up to convergence
in the size of the abstract model. The successive reductions
in abstract model sizes, typically by two orders of magnitude
across all iterations, was crucial for successful verification of
large industry designs.

In practice, refinement-based approaches which start from
a small abstract model may require many iterations before
converging on a model where the proof succeeds. More fre-
quently, the size of the refined abstract model grows mono-
tonically larger, on which unbounded verification methods
fail to complete. On the other hand, abstraction-based ap-
proaches which start from the given concrete model may need
to handle much larger models. However, note that they do
not require complete verification on these larger models for
the purpose of abstraction. We believe there is likely to be
more activity in exploring useful combinations of these ap-
proaches.

5 ATPG-based Model Checking

Concurrent with the development of SAT methods for model
checking there has been a growing interest in applying tools
for automatic test pattern generation (ATPG) of sequential
circuits to the model checking problem. ATPG tools for se-
quential circuits (abbreviated assequential ATPGtools in
the sequel) are designed to search for input sequences to the
given circuit that can test for the presence of a certain fault.
A sub-task in this process involves performing a search on
the space of input sequences of the sequential machine for an

CIRCUIT
stuck−at FAULTINPUT

NETWORK
TEST

Property

Figure 7. Sequential ATPG for Model Checking

input sequence that will excite a certain signal in the circuit
to logic 1 or 0. In this respect the core problems solved by se-
quential ATPG algorithms are very similar to those expressed
by SAT formulations of circuit problems. Historically, the key
difference between ATPG algorithms and CNF-based SAT
solvers has been that the former perform branch-and-bound
search on a structural circuit representation rather than a CNF
database. This allows ATPG tools to implement efficient deci-
sion heuristics based on the circuit structure and to model and
deal with real-world circuit primitives, such as tri-state buses
and high-impedance logic values. Further, unlike SAT-based
bounded model checking, sequential ATPG tools do not need
to explicitly replicate the circuit structure when performing
sequential reasoning. More importantly, the latter can be used
to implementcompleteproperty checking algorithms while
the former essentially perform a bounded check. On the other
hand, sequential ATPG tools have traditionally lacked tech-
niques such as conflict-based learning and efficient Boolean
constraint propagation (implication generation) which are the
main sources of power and efficiency of modern SAT solvers.

Boppanaet al. [20] were the first to recognize the rel-
ative advantages of sequential ATPG solvers over conven-
tional CNF-SAT solvers and to employ a sequential ATPG
tool to check safety properties on circuits. The basic idea
of this formulation, as shown in Figure 7, is to construct a
test network, based on the property, and place a fault on the
output of this test network such that this fault is testable if
and only if there exists a counter-example for the specified
property. A key contribution of this work was to recognize
that most sequential designs havesynchronizing sequences
which cause the FSM (finite state machine) to reach a spe-
cific state (says0) regardless of the starting state. Using this,
the checking of safety properties of the formAG EFp can be
reduced to verifyingEFs0 p. The authors showed that since
there is no explicit storage of states in each time-frame (like
BDD-based model checkers) a sequential ATPG-based model
checker could outperform conventional BDD-based model
checkers in several cases.

In another work [2], the authors propose a method of
boundedmodel checking using a sequential ATPG tool. Un-
like the formulation of [20] where the test network is a com-
binational network based on the propertyp, this work sup-
ports both safety and liveness properties and the test network
is a monitor FSM based on both the property and the bound
n, the number of time-steps. A fault specified on the output
of this monitor is testable if and only if the given property
has a counter-example withinn time-steps of the initial state.
The authors report impressive speed-ups and memory sav-
ings, compared to a Cadence-SMV BMC based on zChaff.

12 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

In related work, Shenget al. [91] have successfully used
a sequential ATPG tool based on simulation and genetic al-
gorithms for checking safety properties. They observe that
such a tool, while not suitable forverification per se, can
be very effective in finding bugs. Huan and Cheng [56] have
used a combination of structural, word-level ATPG and mod-
ular arithmetic constraint solving techniques to check safety
properties.

While a recent experimental comparison between SAT
and ATPG based BMC approaches [78] found no real perfor-
mance gap between the two formulations, our experience has
shown that model checking approaches based on ATPG tools
and CNF-SAT solvers really have orthogonal strengths. Thus,
ATPG-based model checkers can be superior to SAT-BMC on
certain benchmarks and vice versa. Current research is aimed
at producing a tool that combines the benefits of both types of
engines. The hybrid SAT solver [41] discussed in Section 2.2
is one such attempt. Another significant step in this direction
has been reported by Iyeret al. in the SATORI solver [59].
SATORI is a complete algorithm for sequential Boolean rea-
soning. It is based on algorithms and techniques available in
modern sequential ATPG tools which have been augmented
with some flavorof the techniques (e.g., efficient BCP and
conflict-driven learning) available in modern SAT solvers.

6 QBF

Checking the satisfiability of the more expressive logic of
Quantified Boolean Formulae(QBF), is equivalent to sym-
bolic reachability and thus sequential property checking. This
fact, in principle, can be used to obtain a QBF-based model
checking algorithm. In the future, QBF may play the same
role for sequential property checking or model checking, as
SAT does today for combinational property checking. There-
fore, we briefly explain the connection between QBF and
model checking and show how SAT based techniques for un-
bounded model checking relate to QBF. We conclude the sec-
tion with an overview on the state-of-the-art of algorithms
and implementations for solving QBF, which naturally are
very similar to those used for SAT.

6.1 QBF for Model Checking

The logic of Quantified Boolean Formulae (QBF) is a gen-
eralization of propositional logic, the input language of SAT
solvers, that allows Boolean variables to be quantified. Typi-
cal examples are the following two formulas

∀x[∃y[x↔ y]] and ∃y[∀x[x↔ y]],

the first formula beingtrueand the second evaluating tofalse.
This already highlights the most important difference between
QBF and SAT: the quantification order of the variables in
which the formula is evaluated matters. Note, that a propo-
sitional formula is an instance of a QBF formula with only
existentially quantified variables.

Checking satisfiability for QBF, which we also abbreviate
as QBF, generalizes SAT and is a PSPACE complete prob-
lem [93]. QBF is expected to have exponential complexity
and to be strictly harder than NP. It has been observed in [83]
that the symbolic reachability problem is PSPACE complete
as well. Thus there exist polynomial reductions from sequen-
tial property checking to QBF and vice versa. For our pur-
pose of using QBF solvers for sequential property checking
we give a translation of checking safety properties to check-
ing satisfiability of QBF. The other direction,i.e., translating
QBF to symbolic reachability, can be obtained from [34] in
combination with [84].

Consider the forward safety checking algorithm of Fig-
ure 3 in Section 2.3. Here, the check to see if a bad state
(violating the safety property) is contained in the set of states
reached in the current iteration can be formulated as a SAT
problem, since all the quantifiers introduced are of the same
type. Only in the termination check an alternation of quanti-
fiers occurs.

If we use QBF to represent sets of states symbolically we
get a complete procedure. Instead of performing an image
computation in each iteration of the algorithm, as in classi-
cal BDD based algorithms [22,72] or in modern SAT based
fixpoint algorithms [73] (see Section 4.1.2) the image can be
represented symbolically with QBF by introducing quanti-
fiers without eliminating them. Then the termination check
of the fixpoint algorithm becomes an instance of checking
satisfiability of QBF (see Section 4 of [80]). Regardless of
the fact that the implementation of QBF solvers is still in its
infancy, this approach has the drawback that the number of
iterations of the fixpoint algorithm can only be bounded by
the diameter of the model and is therefore exponential in the
size of the model, in the worst case.

Starting from iterative squaring [22] an even linear reduc-
tion can be obtained. The original idea of iterative squaring is
to compute the transitive closureT∗ of the transition relation
T according to the following equation:

T2i(s, t)≡ ∃s′[Ti(s,s′)∧Ti(s′, t)] (7)

Let the model consists ofn state bits (flip-flops). ThenT∗ ≡
Tm with m= 2n. Thus aftern applications of the above equa-
tion T∗ is obtained. If the first argument ofT∗ can be re-
stricted to the set of initial states, the resulting expression is
the characteristic function of the set of reachable states. In
order to keep the exposition simple, we assume that the tran-
sition relation contains the identity relation. This is equivalent
to assuming that the model may always stall.

Originally BDDs would have been used for representing
Ti , with the problem that an additional set of variables is in-
volved when eliminating the quantifier in Equation 7 com-
pared to standard image computation as in Equation 1. Ad-
ditionally, the approximations to the transitive closure of the
transition relation can not be kept in partitioned form, which
results in very large BDDs. Moreover there is no obvious
way to restrict the computation to the reachable state space.
These problems may be the reasons that iterative squaring

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 13

was not used much in practice when using BDDs. In the con-
text of SAT, iterative squaring was successfully applied in
[103], by assuming determinism except for the choice of the
initial state.

In principle, in order to get a QBF based algorithm, we
only need to apply the above equationn times and add the
initial state constraints to obtain a propositional formula that
represents all reachable states. However, the parameter lists
of the two occurrences ofTi in the body of the quantifier
are different, and thus applying the equation usually involves
doubling the size of the formula. Additionally, there is almost
no chance for sharing common subformulae. With BDDsTi

may potentially be represented by a small BDD. Also one can
hope that the quantifier eliminations are cheap. But directly
using the above equation to generate QBF is not better than
unrolling the transition relation as in BMC.

By using QBF as presented in [83] (see also [82]) the ef-
fect of copyingTi twice can be avoided. We introduce a new
universally quantified variablec, that determines which of the
two parameter lists should be used.

T2i(s, t) ≡ ∃s′[∀c[∃l , r[(c→

use left parameter list︷ ︸︸ ︷
(l , r) = (s,s′)) ∧

(c→ (l , r) = (s′, t)︸ ︷︷ ︸
use right parameter list

) ∧ Ti(l , r)]]]

Now applying this equationn times merely introduces 3n ex-
istentially quantified state bit vectors andn universally quan-
tified variables and needs only one copy of the transition rela-
tion. The result is not propositional anymore, since it involves
2n alternations of quantifiers but it is quadratic in the number
of state bitsn. It still needs to be seen, whether this formu-
lation of symbolic reachability is beneficial in practice, but
clearly there is a potential for an exponential speedup, com-
pared to current algorithms.

6.2 QBF Solvers

The efficiency of the approach described above relies on ef-
ficient implementations of QBF solvers. We briefly give an
overview on the state-of-the-art in QBF solvers. For more de-
tails the interested reader is referred to the report on the evalu-
ation of QBF solvers for the SAT’2003 conference [12]. First
note that techniques for image computation in model check-
ing can be interpreted as QBF decision procedures, since they
essentially provide a quantifier elimination procedure. As al-
ready described, these techniques are based on BDDs as in
traditional symbolic model checking [22], based on structural
methods [99,94], directly based on SAT [73,74], or based on
combination of SAT and other decision diagrams[1,52,103].

An enumeration based explicit QBF decision procedure,
which mentions applications to model checking, and is sim-
ilar to the SAT based image computation of McMillan [73]
discussed in Section 4.1.2, can be found in [80]. Related to
the explicit quantifier expansion in [1,103] the structural QBF

algorithm in [7] expands quantifiers by copying and substitu-
tion:

∀x[f] ≡ f [0/x] ∧ f [1/x]

Earlier attempts [24] for QBF are based on DPLL. In essence,
an algorithm similar to that of Figure 1 can be used. There
are two major differences. First, decision variables can only
be picked in the same order as they occur in the quantifier
prefix. Second, for a universal variablex it is required that
both sub-problems, assigningx = 0 andx = 1, have to return
satisfiable.

Recently, several groups [108,43,66] independently ap-
plied techniques from the SAT domain to QBF, such as the
conflict-driven learning and conflict-driven backtracking tech-
niques discussed in Section 2.2. However, QBF provides the
opportunity to learn not only conflict clauses, but also mod-
els for speeding up the search for universally quantified vari-
ables. Finally, there is the notion of q-resolution [62], which
in principle gives a complete decision procedure for QBF,
but, for the same reason as the resolution-based Davis & Put-
nam procedure [33], requires too much memory in practice.
However, more recently it has been observed in [13] that the
combination of q-resolution with expansion can lead to an
efficient QBF decision procedure, which in many cases out-
performs DPLL style solvers.

The structure of the QBF problem is much richer than the
simpler SAT problem. More optimizations are possible and
probably also necessary. Algorithms and tools are not as ma-
ture as for SAT. Implementations of QBF solvers are steadily
improving. A large set of benchmarks is available1 and a stan-
dard input format exists (QDIMACS).

As mentioned earlier, the restriction on the order of deci-
sion variables is the major difference between QBF and SAT.
In practice, this also seems to severely restrict the size of the
problems that can be handled. However, a QBF formulation
of a problem may be exponentially more succinct. Thus there
is a potential for an exponential speedup using QBF solvers,
which may have a large impact in the context of sequential
property checking.

7 SAT-based Verification: Achievements & Challenges

There has been significant progress in the area of SAT-based
verification over the last decade. However, much remains to
be done to make this technology more pervasive in industrial
design verification flows. In the following we discuss the no-
table achievements and major challenges in SAT-based veri-
fication.

7.1 Achievements

The single most important achievement of SAT-based verifi-
cation has been its emergence as an orthogonal technology
to BDD-based model checking techniques (bounded and un-
bounded). This means that there are several instances where

1 http://www.qbflib.org

14 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

one technology significantly out-performs the other and vice
versa. Further, SAT-based techniques have been found to be
less sensitive to the problem size and typically require much
less user tuning of parameters. Hence, such methods are capa-
ble of verifying much larger systems than those typically han-
dled by BDDs, and of enhancing productivity by obviating
the need for user ingenuity and tuning effort. Bounded Model
checking (BMC) based on SAT methods has been found to be
particularly effective at generating counterexamples for hard-
to-find bugs at short to medium depths (upto depth 50−60)
of sequential behavior.

7.2 Challenges

While SAT-based verification methods have proven to be or-
thogonal to their BDD counterparts there is very little fun-
damental understanding of their respective strengths. In this
respect, a major challenge is to develop averification method-
ology which employs both SAT and BDD methodsin a manner
best suited to utilize their respective strengths.

The strength of SAT-based verification techniques lies pri-
marily in falsification. BDD-based symbolic model checking
continues to be the de-facto standard for verifying proper-
ties. Several attractive techniques forSAT-based unbounded
model checking (UMC)have been proposed in recent years,
including methods for SAT-based state space traversal, induc-
tive reasoning and iterative abstraction refinement surveyed
in Section 4. As it currently stands this body of research is
rich in promising ideas but somewhat immature. For exam-
ple, among the several variants of induction, the most scalable
ones (e.g., simple induction) are too weak to prove most prop-
erties while the most comprehensive ones (e.g., unique states
induction with depth) may not be applicable to the largest de-
signs. Therefore, further research is needed to develop SAT-
based unbounded model checking into a viable alternative to
BDD-based symbolic model checking.

SAT-based BMC is currently used as a falsification tech-
nique. However, as pointed out the original proponents of
SAT-based BMC [26], the technique can be used to formally
verify properties by performing the BMC check upto the se-
quential circuit depth (or some over-approximation thereof).
Recently, there have been several attempts at the problem of
computing the sequential depthof a given system. Tight over-
approximations would also be valuable. But the inherent in-
tractability of the problem has frustrated attempts at finding
a general, scalable solution. Nevertheless, such a solution, if
discovered, would greatly enhance both the efficacy and ap-
plicability of SAT-based BMC techniques.

This issue lies at the very core of the SAT-BMC formu-
lation. Since the BMC formulation uses an explicit unrolling
of time-frames, the generated SAT formulas can become too
large, and hence unsolvable for large sequential depths. A de-
sirable solution to this is the development of a sequential rea-
soning engine that implements all the features of modern SAT
solvers but does not require explicit unrolling of the circuit. A
first attempt onimplicit time-frame unrollinghas been made

in the SATORI solver [59] which partly integrates ideas from
modern SAT solvers and sequential ATPG tools.

As the simplicity of the SAT problem helped to improve
algorithms and implementations for combinational property
checking, including BMC, QBF may play the same role for
(complete) sequential property checking. Thus improvements
to the capacity of QBF solvers will have a large impact on
sequential property verification, in addition to providing an
important research topic on its own.

While it is clear that SAT-based verification techniques
will continue to make inroads into current verification method-
ology and tools, in our opinion the satisfactory solution of
some of the issues discussed above will be crucial in making
this technology more widely applicable. In any case, the next
few years promise to be an interesting time for researchers
working in this area as well for tool developers seeking to in-
tegrate this technology into the next generation of verification
tools in industrial practice.

References

1. Parosh A. Abdulla, Per Bjesse, and Niklas Eén. Symbolic
Reachability Analysis Based on SAT-Solvers. In Susanne Graf
and Michael Schwartzbach, editors,Proceedings of the6th In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), volume 1785 of
Lecture Notes in Computer Science, pages 411–425. Springer,
March 2000.

2. Jacob A. Abraham, Vivekananda M. Vedula, and Daniel G.
Saab. Verifying Properties Using Sequential ATPG. InPro-
ceedings of the International Test Conference (ITC), pages
194–202, October 2002.

3. Rajeev Alur. Timed Automata. In Nicolas Halbwachs and
Doron Peled, editors,Proceedings of the11th International
Conference on Computer Aided Verification (CAV), volume
1633 of Lecture Notes in Computer Science, pages 8–22.
Springer, July 1999.

4. Nina Amla, Robert Kurshan, Kenneth McMillan, and Ricardo
Medel. Experimental Analysis of Different Techniques for
Bounded Model Checking. In Hubert Garavel and John Hat-
cliff, editors,Proceedings of the9th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 2619 ofLecture Notes in Computer
Science, pages 34–48. Springer, April 2003.

5. Henrik R. Andersen and Henrik Hulgaard. Boolean Expres-
sion Diagrams. Information and Computation, 179(2):194–
212, December 2002.

6. Abdelwaheb Ayari and David Basin. Bounded model con-
struction for monadic second-order logics. In E. Allen Emer-
son and A. Prasad Sistla, editors,Proceedings of the12th Inter-
national Conference on Computer-Aided Verification (CAV),
number 1855 in Lecture Notes in Computer Science, pages
99–113. Springer, July 2000.

7. Abdelwaheb Ayari and David Basin. QUBOS: Deciding
Quantified Boolean Logic using Propositional Satisfiability
Solvers. In Mark Aagard and John W. O’Leary, editors,Pro-
ceedings of the4th International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD), volume 2517 of
Lecture Notes in Computer Science, pages 187–201. Springer,
2002.

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 15

8. Thomas Ball and Sriram K. Rajamani. The SLAM project:
Debugging system soft-ware via static analysis. InProceed-
ings of the29th SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 1–3. ACM, Jan-
uary 2002.

9. Clark W. Barrett, David L. Dill, and Aaron Stump. Checking
Satisfiability of First-Order Formulas by Incremental Transla-
tion to SAT. In Ed Brinksma and Kim G. Larsen, editors,Pro-
ceedings of the14th International Conference on Computer
Aided Verification (CAV), volume 2404 ofLecture Notes in
Computer Science, pages 236–249. Springer, July 2002.

10. Jason Baumgartner, Andreas Kuehlmann, and Jacob A. Abra-
ham. Property Checking via Structural Analysis. In
Ed Brinksma and Kim G. Larsen, editors,Proceedings of the
14th International Conference on Computer Aided Verification
(CAV), volume 2404 ofLecture Notes in Computer Science,
pages 151–165. Springer, July 2002.

11. Roberto J. Bayardo and Robert C. Schrag. Using CSP look-
back techniques to solve real-world SAT instances. InPro-
ceedings of the National Conference on Artificial Intelligence
(AAAI), pages 203–208, July 1997.

12. Daniel Le Berre, Laurent Simon, and Armando Tachella.
Challenges in the QBF Arena: the SAT’03 Evaluation of QBF
Solvers. In Enrico Giunchiglia and Armando Tacchella, edi-
tors,Proceedings of the6th International Conference on The-
ory and Applications of Satisfiability Testing (SAT), volume
2919 ofLecture Notes in Computer Science, pages 468–485.
Springer, May 2004.

13. Armin Biere. Resolve and Expand. InProceedings of the
7th International Conference on Theory and Applications of
Satisfiability Testing (SAT), May 2004.

14. Armin Biere, Alessandro Cimatti, Edmund M. Clarke,
Masahiro Fujita, and Yunshan Zhu. Symbolic Model Check-
ing using SAT procedures instead of BDDs. InProceedings
of the36th Design Automation Conference (DAC), pages 317–
320, June 1999.

15. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and
Yunshan Zhu. Symbolic Model Checking without BDDs. In
Rance Cleaveland, editor,Proceedings of the5th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1579 ofLecture Notes
in Computer Science, pages 193–207. Springer, March 1999.

16. Armin Biere, Edmund Clarke, Richard Raimi, and Yunshan
Zhu. Verifying safety properties of a PowerPC microproces-
sor using symbolic model checking without BDDs. In Nico-
las Halbwachs and Doron Peled, editors,Proceedings of the
11th International Conference on Computer Aided Verification
(CAV), volume 1633 ofLecture Notes in Computer Science,
pages 60–71. Springer, July 1999.

17. Armin Biere, Edmund M. Clarke, and Yunshan Zhu. Multi-
ple State and Single State Tableaux for Combining Local and
Global Model Checking. In Ernst-R̈udiger Olderog and Bern-
hard Steffen, editors,Correct System Design, Recent Insight
and Advances, volume 1710 ofLecture Notes in Computer
Science, pages 163–179. Springer, 1999.

18. Per Bjesse and Koen Claessen. SAT-based Verification with-
out State Space Traversal. In Warren A. Hunt Jr. and Steven D.
Johnson, editors,Proceedings of the3rd International Con-
ference on Formal Methods in Computer Aided Design (FM-
CAD), volume 1954 ofLecture Notes in Computer Science,
pages 372–389. Springer, November 2000.

19. Per Bjesse, Tim Leonard, and Abdel Mokkedem. Finding
Bugs in an Alpha Microprocessor Using Satisfiability Solvers.

In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of the13th International Conference on Com-
puter Aided Verification (CAV), volume 2102 ofLecture Notes
in Computer Science, pages 454–464. Springer, July 2001.

20. Vamsi Boppana, Sreeranga P. Rajan, Koichiro Takayama, and
Masahiro Fujita. Model Checking Based on Sequential ATPG.
In Nicolas Halbwachs and Doron Peled, editors,Proceedings
of the11th International Conference on Computer-Aided Ver-
ification (CAV), volume 1633 ofLecture Notes in Computer
Science, pages 418–430. Springer, July 1999.

21. Randal E. Bryant. Graph Based Algorithms for Boolean
Function Manipulation. IEEE Transactions on Computers,
C(35):677–691, August 1986.

22. Jerry R. Burch, Edmund M. Clarke, David E. Long, Ken-
neth L. McMillan, and David L. Dill. Symbolic model check-
ing for sequential circuit verification.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
13(4):401–424, April 1994.

23. Gianpiero Cabodi, Sergio Nocco, and Stefano Quer. Improv-
ing SAT-based Bounded Model Checking by Means of BDD-
based Approximate Traversals. InProceedings of the De-
sign Automation and Test in Europe (DATE), pages 898–903,
March 2003.

24. Marco Cadoli, Andrea Giovanardi, and Marco Schaerf. An
Algorithm to Evaluate Quantified Boolean Formulae. InPro-
ceedings of the15th National Conference on Artificial Intelli-
gence (AAAI), pages 262–267, July 1998.

25. Pankaj Chauhan, Edmund M. Clarke, James Kukula, Samir
Sapra, Helmut Veith, and Dong Wang. Automated Abstrac-
tion Refinement for Model Checking Large State Spaces using
SAT based Conflict Analysis. In Mark Aagaard and John W.
O’Leary, editors,Proceedings of the4th International Con-
ference on Formal Methods in Computer-Aided Design (FM-
CAD), volume 2517 ofLecture Notes in Computer Science,
pages 33–51, November 2002.

26. Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan
Zhu. Bounded Model Checking Using Satisfiability Solv-
ing. Formal Methods in System Design, 19(1):7–34, July 2001.
Kluwer Academic Publishers.

27. Edmund M. Clarke and E. Allen Emerson. Design and Synthe-
sis of Synchronization Skeletons Using Branching-Time Tem-
poral Logic. In Dexter Kozen, editor,Proceedings of the Work-
shop on Logic of Programs, volume 131 ofLecture Notes in
Computer Science, pages 52–71. Springer, 1982.

28. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model Checking. MIT Press, 2000.

29. Edmund M. Clarke, Anubhav Gupta, James Kukula, and Ofer
Strichman. SAT-based Abstraction Refinement Using ILP and
Machine Learning Techniques. In Ed Brinksma and Kim G.
Larsen, editors,Proceedings of the14th International Confer-
ence on Computer Aided Verification (CAV), volume 2404 of
Lecture Notes in Computer Science, pages 265–279. Springer,
July 2002.

30. Edmund M. Clarke and Bernd-Holger Schlingloff. Model
Checking. In John Alan Robinson and Andrei Voronkov, ed-
itors, Handbook of Automated Reasoning, volume 2, chap-
ter 24, pages 1635–1790. Elsevier and MIT Press, 2001.

31. Fady Copti, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila
Kamhi, Armando Tacchella, and Moshe Y. Vardi. Benefits of
Bounded Model Checking in an Industrial Setting. In Gérard
Berry, Hubert Comon, and Alain Finkel, editors,Proceedings
of the13th International Conference on Computer Aided Ver-

16 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

ification (CAV), volume 2102 ofLecture Notes in Computer
Science, pages 436–453. Springer, July 2001.

32. Martin Davis, George Logemann, and Donald Loveland. A
Machine Program for Theorem-Proving.Communications of
the ACM, 5(7):394–397, July 1962.

33. Martin Davis and Hilary Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM, 7(3):201–215,
July 1960.

34. Francesco M. Donini, Paolo Liberatore, Fabio Massacci, and
Marco Schaerf. Solving QBF with SMV. InProceedings of
the Eighth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pages 578–589,
2002.

35. Niklas Éen and Niklas S̈orensson. Temporal Induction by In-
cremental SAT Solving. In Ofer Strichman and Armin Biere,
editors,Proceedings of the First International Workshop on
Bounded Model Checking (BMC), volume 89 ofElectronic
Notes in Theoretical Computer Science. Elsevier, July 2003.

36. E. Allen Emerson. Temporal and modal logic, volume B,
chapter 16, pages 995–1072. MIT Press, 1990.

37. Farzan Fallah. Binary Time-Frame Expansion. InProceedings
of the International Conference on Computer Aided Design
(ICCAD), pages 458–464, November 2002.

38. Hideo Fujiwara and Takeshi Shimono. On the acceleration of
test generation algorithms.IEEE Transactions on Computers,
C-32:1137–1144, December 1983.

39. Malay K. Ganai and Adnan Aziz. Improved SAT-based
Bounded Reachability Analysis. InProceedings of the15th In-
ternational Conference on VLSI Design (VLSID), pages 729–
734, January 2002.

40. Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Efficient
SAT-based Unbounded Symbolic Model Checking using Cir-
cuit Cofactoring. InProceedings of the International Confer-
ence on Computer-Aided Design (ICCAD), November 2004.

41. Malay K. Ganai, Lintao Zhang, Pranav Ashar, and Aarti
Gupta. Combining Strengths of Circuit-based and CNF-based
Algorithms for a High Performance SAT Solver. InProceed-
ings of the39th Design Automation Conference (DAC), pages
747–750, June 2002.

42. Michael R. Garey and David S. Johnson.Computers and
Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman, San Francisco, 1979.

43. Enrico Giunchiglia, Massimo Narizzano, and Armando Tac-
chella. Learning for Quantified Boolean Logic Satisfiability.
In Proceedings of the18th National Conference on Artificial
Intelligence (AAAI), pages 649–654, July 2002.

44. Prabhakar Goel. An implicit enumeration algorithm to gener-
ate tests for combinational logic circuits.IEEE Transactions
on Computers, C-30:215–222, March 1981.

45. Evgueni Goldberg and Yakov Novikov. BerkMin: a Fast and
Robust Sat-Solver. InProceedings of Design Automation and
Test in Europe (DATE), pages 142–149, March 2002.

46. Evgueni Goldberg and Yakov Novikov. Verification of Proofs
of Unsatisfiability for CNF Formulas. InProceedings of the
Design Automation and Test in Europe (DATE), pages 886–
891, March 2003.

47. Evgueni Goldberg, Mukul R. Prasad, and Robert K. Brayton.
Using SAT for Combinational Equivalence Checking. InPro-
ceedings of Design Automation and Test in Europe (DATE),
pages 114–121, March 2001.

48. Aarti Gupta, Malay Ganai, Chao Wang, Zijiang Yang, and
Pranav Ashar. Abstraction and BDDs Complement SAT-based

BMC in DiVer. In Warren A. Hunt Jr. and Fabio Somenzi,
editors,Proceedings of the15th International Conference on
Computer-Aided Verification (CAV), volume 2725 ofLecture
Notes in Computer Science, pages 206–209. Springer, July
2003.

49. Aarti Gupta, Malay Ganai, Chao Wang, Zijiang Yang, and
Pranav Ashar. Learning from BDDs in SAT-based Bounded
Model Checking. InProceedings of the40th Design Automa-
tion Conference (DAC), pages 824–829, June 2003.

50. Aarti Gupta, Malay Ganai, Zijiang Yang, and Pranav Ashar.
Iterative Abstraction Using SAT-based BMC with Proof Anal-
ysis. In Proceedings of the International Conference on
Computer Aided Design (ICCAD), pages 416–423, November
2003.

51. Aarti Gupta, Anubhav Gupta, Zijiang Yang, and Pranav Ashar.
Dynamic Detection and Removal of Inactive Clauses in SAT
with Application in Image Computation. InProceedings of
the38th Design Automation Conference, pages 536–541, June
2001.

52. Aarti Gupta, Zijiang Yang, Pranav Ashar, and Anubhav Gupta.
SAT Based State Reachability Analysis and Model Checking.
In Warren A. Hunt and Steven D. Johnson, editors,Proceed-
ings of the3rd International Conference on Formal Methods
in Computer-Aided Design (FMCAD), volume 1954 ofLec-
ture Notes in Computer Science, pages 354–371, November
2000.

53. Aarti Gupta, Zijiang Yang, Pranav Ashar, Lintao Zhang, and
Sharad Malik. Partition-Based Decision Heuristics for Image
Computation Using SAT and BDDs. InProceedings of the In-
ternational Conference on Computer Aided Design (ICCAD),
pages 286–292, November 2001.

54. Thomas A. Henzinger, Orna Kupferman, and Shaz Qadeer.
From Pre-historic toPost-modern symbolic model checking.
In Alan J. Hu and Moshe Y. Vardi, editors,Proceedings of
the 10th International Conference on Computer-Aided Verifi-
cation (CAV), volume 1427 ofLecture Notes in Computer Sci-
ence, pages 195–206. Springer, July 1998.

55. Gerard J. Holzmann.Design and Validation of Computer Pro-
tocols. Prentice Hall, 1991.

56. Chung-Yang Huan and Kwang-Ting Cheng. Using Word-
Level ATPG and Modular Arithmetic Constraint-Solving
Techniques for Assertion Property Checking.IEEE Trns-
actions on Computer-Aided Design, 20(3):381–391, March
2001.

57. Hiroaki Iwashita and Tsuneo Nakata. Forward Model Check-
ing Techniques Oriented to Buggy Designs. InProceedings of
the International Conference on Computer-Aided Design (IC-
CAD), pages 400–404, November 1997.

58. Hiroaki Iwashita, Tsuneo Nakata, and Fumiyasu Hirose. CTL
model checking based on forward state traversal. InProceed-
ings of the International Conference on Computer-Aided De-
sign (ICCAD), pages 82–87, November 1996.

59. Madhu K. Iyer, Ganapathy Parthasarathy, and Kwang-Ting
Cheng. SATORI-A Fast Sequential SAT Engine for Circuits.
In Proceedings of the International Conference on Computer-
Aided Design (ICCAD), pages 320–325, November 2003.

60. Daniel Jackson and Mandana Vaziri. Finding bugs with a con-
straint solver. InProceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 14–25, Au-
gust 2000.

61. Joonyoung Kim, Jesse Whittemore, and Karem Sakallah. On
Solving Stack-Based Incremental Satisfiability Problems. In

Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification 17

Proceedings of the International Conference on Computer De-
sign (ICCD), pages 379–382, October 2000.

62. Hans Kleine B̈uning, Marek Karpinski, and Andreas Flgel.
Resolution for quantified boolean formulas.Information and
Computation, 117(1):12–18, February 1995.

63. Hans Kleine B̈uning and Theodor Lettmann.Propositional
logic: Deduction and Algorithms, volume 48 ofCambridge
Tracts in Theoretical Computer Science. Cambridge Univer-
sity Press, 1999. ISBN-0-521-63017-7.

64. Andreas Kuehlmann, Viresh Paruthi, Florian Krohm, and
Malay K. Ganai. Robust Boolean Reasoning for Equivalence
Checking and Functional Property Verification.IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 21(12):1377–1394, December 2002.

65. Tracy Larrabee. Test Pattern Generation Using Boolean Sat-
isfiability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 11(1):4–15, January 1992.

66. Reinhold Letz. Lemma and Model Caching in Decision Pro-
cedures for Quantified Boolean Formulas. In Uwe Egly and
Christian G. Ferm̈uller, editors,Proceedings of International
Conference on Automated Reasoning with Analytic Tableaux
and Related Methods (TABLEAUX), volume 2381 ofLecture
Notes in Computer Science. Springer, July 2002.

67. Bing Li, Chao Wang, and Fabio Somenzi. A Satisfiability-
based Approach to Abstraction Refinement in Model Check-
ing. In Proceedings of the First International Workshop on
Bounded Model Checking (BMC), volume 89 ofElectronic
Notes in Theoretical Computer Science. Elsevier, July 2003.

68. Feng Lu, Li-C. Wang, Kwang-T. Cheng, John Moondanos,
and Ziyad Hanna. A Signal Correlation Guided ATPG Solver
And Its Applications For Solving Difficult Industrial Cases.
In Proceedings of the40th Design Automation Conference
(DAC), pages 436–441, June 2003.

69. Feng Lu, Li-C. Wang, Kwang-Ting Cheng, and Ric Chung-
Yang Huang. A Circuit SAT Solver with Signal Correlation
Guided Learning. InProceedings of the Design Automation
and Test in Europe (DATE), pages 892–897, March 2003.

70. Jõao P. Marques-Silva. The Impact of Branching Heuristics in
Propositional Satisfiability Algorithms. InProceedings of the
9th Portuguese Conference on Artificial Intelligence (EPIA),
September 1999.

71. Jõao P. Marques-Silva and Karem A. Sakallah. GRASP: A
Search Algorithm for Propositional Satisfiability.IEEE Trans-
actions on Computers, 48(5):506–521, May 1999.

72. Kenneth L. McMillan. Symbolic Model Checking: An ap-
proach to the State Explosion Problem. Kluwer Academic
Publishers, 1993.

73. Kenneth L. McMillan. Applying SAT Methods in Unbounded
Symbolic Model Checking. In Ed Brinksma and Kim G.
Larsen, editors,Proceedings of the14th International Confer-
ence on Computer-Aided Verification, volume 2404 ofLecture
Notes in Computer Science, pages 250–264. Springer, July
2002.

74. Kenneth L. McMillan. Interpolation and SAT-based Model
Checking. In Jr. Warren A. Hunt and Fabio Somenzi, editors,
Proceedings of the15th Conference on Computer-Aided Ver-
ification (CAV), volume 2725 ofLecture Notes in Computer
Science, pages 1–13. Springer, July 2003.

75. Kenneth L. McMillan and Nina Amla. Automatic abstrac-
tion without counterexamples. In Hubert Garavel and John
Hatcliff, editors,Proceedings of the International Conference
on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), volume 2619 ofLecture Notes in Computer
Science, pages 2–17. Springer, April 2003.

76. Maher Mneimneh and Karem Sakallah. SAT-Based Sequential
Depth Computation. InProceedings of the First International
Workshop on Constraints in Formal Verification, September
2002.

77. Matthew H. Moskewicz, Conor F. Madigan, Ying Zhao, Lin-
tao Zhang, and Sharad Malik. Chaff: Engineering an Efficient
SAT Solver. InProceedings of the38th Design Automation
Conference (DAC), pages 530–535, June 2001.

78. Ganapathy Parthasarthy, Chung-Yang Huang, and Kwang-
Ting Cheng. An Analysis of ATPG and SAT algorithms for
Formal Verification. InProceedings of the6th International
High-Level Design Validation and Test Workshop (HLDVT),
pages 177–182, November 2001.

79. Robert P.Kurshan.Computer-Aided Verification of Coordinat-
ing Processes: The Automata-Theoretic Approach. Princeton
University Press, 1995.

80. David Plaisted, Armin Biere, and Yunshan Zhu. A Satisfia-
bility Procedure for Quantified Boolean Formulae.Discrete
Applied Mathematics, 130(2):291–328, August 2003.

81. David Plaisted and Steven Greenbaum. A Structure-
preserving Clause Form Translation.Journal of Symbolic
Computation, 2(3):293–304, September 1986.

82. Jussi Rintanen. Partial implicit unfolding in the davis-putnam
procedure for quantified boolean formulae. InInternational
Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), 2001.

83. W. J. Savitch. Relational between nondeterministic and de-
terministic tape complexity.Journal of Computer and System
Sciences, 4:177–192, 1970.

84. Viktor Schuppan and Armin Biere. Efficient reduction of finite
state model checking to reachability analysis.Software Tools
for Technology Transfer (STTT), 5(1-2):185–204, March 2004.

85. Bart Selman, Henry A. Kautz, and Bram Cohen. Noise Strate-
gies for Improving Local Search. InProceedings of the12th

National Conference on Artificial Intelligence (AAAI), pages
337–343, July 1994.

86. Bart Selman, Hector J. Levesque, and David Mitchell. A New
Method for Solving Hard Satisfiability Problems. InProceed-
ings of the10th National Conference on Artificial Intelligence
(AAAI), pages 440–446, July 1992.

87. Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A
Hybrid SAT-Based Decision Procedure for Separation Logic
with Uninterpreted Functions. InProceedings of the40th

Design Automation Conference (DAC), pages 425–430, June
2003.

88. Ohad Shacham and Emmanuel Zarpas. Tuning the VSIDS de-
cision heuristic for bounded model checking. InProceedings
of the4th International Workshop on Microprocessor Test and
Verification (MTV), pages 75–79, May 2003.

89. Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Check-
ing safety properties using induction and a SAT-solver. In
Warren A. Hunt Jr. and Steven D. Johnson, editors,Proceed-
ings of the3rd International Conference on Formal Methods
in Computer Aided Design (FMCAD), volume 1954 ofLecture
Notes in Computer Science, pages 108–125. Springer, Novem-
ber 2000.

90. Mary Sheeran and Gunnar Stålmarck. A tutorial on
St̊almarck’s proof procedure for propositional logic.Formal
Methods in System Design, 16(1):23–58, January 2000.

91. Shuo Sheng, Koichiro Takayama, and Michael S. Hsiao.
Effective Static Property Checking Using Simulation-Based

18 Mukul R Prasad et al.: A Survey of Recent Advances in SAT-Based Formal Verification

ATPG. In Proceedings of the39th Design Automation Con-
ference (DAC), pages 813–818, June 2002.

92. Ofer Shtrichman. Sharing Information Between Instances of
Propositional Satisfiability (SAT) Problems, Jan 2000. US
patent (Disclosure number: IL8-2000-0070).

93. L. J. Stockmeyer and A. R. Meyer. Word problems requir-
ing exponential time. InProceedings of the5th Annual ACM
Symposium on the Theory of Computing (STOC), pages 1–9,
1973.

94. Dominik Stoffel and Wolfgang Kunz. Record & Play: A Struc-
tural Fixed Point Iteration for Sequential Circuit Verification.
In Proceedings of the International Conference on Computer
Aided Design (ICCAD), pages 394 – 399, November 1997.

95. Ofer Strichman. Tuning SAT Checkers for Bounded Model
Checking. In E. Allen Emerson and A. Prasad Sistla, editors,
Proceedings of the12th International Conference on Com-
puter Aided Verification (CAV), volume 1855 ofLecture Notes
in Computer Science, pages 480–494. Springer, July 2000.

96. Ofer Strichman. Pruning Techniques for the SAT-based
Bounded Model Checking Problem. In Tiziana Margaria and
Thomas F. Melham, editors,Proceedings of the11th Advanced
Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME), volume 2144 ofLecture
Notes in Computer Science, pages 58–70. Springer, September
2001.

97. Ofer Strichman. On Solving Presburger and Linear Arith-
metic with SAT. In Mark Aagaard and John W. O’Leary, edi-
tors,Proceedings of the4th International Conference on For-
mal Methods in Computer-Aided Design (FMCAD), volume
2517 ofLecture Notes in Computer Science, pages 160–170.
Springer, November 2002.

98. G. S. Tseitin. On the Complexity of Derivation in Proposi-
tional Calculus. InStudies in Constructive Mathematics and
Mathematical Logic, Part II, volume 8 ofSeminars in Mathe-
matics, pages 234–259, Leningrad, 1968. V.A. Steklov Math-
ematical Institute. English Translation: Consultants Bureau,
New York, 1970, pages 115 – 125.

99. C. A. J. van Eijk. Sequential Equivalence Checking without
State Space Traversal. InProceedings of the Design Automa-
tion and Test in Europe (DATE), pages 618–623, February
1998.

100. Miroslav N. Velev and Randal E. Bryant. Effective Use of
Boolean Satisfiability Procedures in the Formal Verification of
Superscalar and VLIW Microprocessors.Journal of Symbolic
Computation (JSC), 35(2):73–106, February 2003.

101. Chao Wang, Bing Li, HoonSang Jin, Gary D. Hachtel, and
Fabio Somenzi. Improving Ariadne’s Bundle by Following
Multiple Threads in Abstraction Refinement. InProceedings
of the International Conference on Computer Aided Design
(ICCAD), pages 408–415, November 2003.

102. Jesse P. Whittemore, Joonyoung Kim, and Karem A. Sakallah.
SATIRE: A New Incremental Satisfiability Engine. InPro-
ceedings of the38th Design Automation Conference (DAC),
pages 542–545, June 2001.

103. Poul F. Williams, Armin Biere, Edmund M. Clarke, and Anub-
hav Gupta. Combining Decision Diagrams and SAT Proce-
dures for Efficient Symbolic Model Checking. In E. Allen
Emerson and A. Prasad Sistla, editors,Proceedings of the
12th International Conference on Computer Aided Verification
(CAV), volume 1855 ofLecture Notes in Computer Science,
pages 124–138. Springer, July 2000.

104. Chia-Chih Yen, Kuang-Chien Chen, and Jing-Yang Jou. A
Practical Approach to Cycle Bound Estimation for Property

Checking. InProceedings of11th International Workshop on
Logic & Synthesis (IWLS), pages 149–154, June 2002.

105. Hantao Zhang. SATO: An Efficient Propositional Prover. In
William McCune, editor,Proceedings of the14th International
Conference on Automated Deduction (CADE), volume 1249 of
Lecture Notes in Computer Science, pages 272–275. Springer,
July 1997.

106. Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and
Sharad Malik. Efficient Conflict Driven Learning in a Boolean
Satisfiability Solver. InProceedings of the International Con-
ference on Computer Aided Design (ICCAD), pages 279–285,
November 2001.

107. Lintao Zhang and Sharad Malik. The Quest for Efficient
Boolean Satisfiability Solvers. In Ed Brinksma and Kim G.
Larsen, editors,Proceedings of the14th International Confer-
ence on Computer Aided Verification (CAV), volume 2404 of
Lecture Notes in Computer Science, pages 17–36. Springer,
July 2002.

108. Lintao Zhang and Sharad Malik. Towards Symmetric Treat-
ment of Conflicts And Satisfaction in Quantified Boolean Sat-
isfiability Solvers. In Pascal Van Hentenryck, editor,Proceed-
ings of8th International Conference on Principles and Prac-
tice of Constraint Programming (CP), volume 2470 ofLecture
Notes in Computer Science, pages 200–215. Springer, 2002.

109. Lintao Zhang and Sharad Malik. Validating SAT Solvers us-
ing an Independent Resolution-based Checker: Practical Im-
plementations and Other Applications. InProceedings of the
Design Automation and Test in Europe (DATE), pages 880–
885, March 2003.

