
Developers from around the world are using the Ruby
language. Here’s what they’re saying about

Programming Ruby. . .

“In their first landmark book, The Pragmatic Programmer, Dave and Andy urged us to
learn at least one new programming language every year. It may follow the principle of
least surprise that the authors would bring us this year’s candidate, accompanied with
a pragmatic philosophy of how to learn your new OO scripting language of choice.”

Frank Westphal , independent consultant

“Ruby is an exciting new language, worth knowing about and well worth considering
for an upcoming project. It’s rare to see such a useful book this early in the life of a
new language. But of course I would expect no less from the authors of The Pragmatic
Programmer. Andy and Dave: Thanks!”

Ron Jeffries , author of Extreme Programming Installed

“I have used Perl and Python for my work . . . but Ruby just turns my work into fun!”

Clemens Hintze , programmer

“Ruby is a remarkably clean, simple, powerful, and practical dynamic OO
programming language. Ruby fully deserves this correspondingly best-of-breed book.
This book is a “must have” wizard’s workshop for using Ruby to boost your
programming power and productivity. This book will greatly amplify the worldwide
use of Ruby, stimulate powerful Ruby extensions, and generate demand for second and
third editions. I look forward to telling later legions of Ruby users that I was farsighted
enough to master Ruby using the classic first edition of Programming Ruby.”

Conrad Schneiker

“A good book by a great pair of programmers about a language with a great future.
This should be the first Ruby book anyone buys.”

Hal Fulton

“Dave and Andy are among the western pioneers who understand the value of this
precious gem of a language. They cleaned and polished it well, dazzling us all with its
depth and transparency. It’s almost magical.”

Aleksi Niemelä

Programming Ruby

Programming Ruby
The Pragmatic Programmer’s Guide

David Thomas
Andrew Hunt

ADDISON–WESLEY
An imprint of Addison Wesley Longman, Inc.

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no express or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

Pearson Education Corporate Sales Division
One Lake Street
Upper Saddle River, NJ 07458
(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng

Library of Congress Cataloging-in-Publication Data

Thomas, David,
Programming Ruby : the pragmatic programmer’s guide / David Thomas, Andrew Hunt.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-71089-7
1. Object-oriented programming (Computer science) 2. Ruby (Computer program language)

I. Hunt, Andrew

QA76.64.T494.2000
005.13’3--dc21 00–045390

CIP

Copyright c© 2001 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher. Printed in the United States of America. Published simultaneously
in Canada.

ISBN 0-201-71089-7
Text printed on recycled paper.
2 3 4 5 6 7 8 9 10—CRS—0504030201
Second printing, February 2001

For Juliet and Ellie,
Zachary and Elizabeth,

Henry and Stuart

Contents

FOREWORD xxi

PREFACE xxiii

1 ROADMAP 1

PART I—FACETS OF RUBY

2 RUBY.NEW 5
Ruby Is an Object-Oriented Language 5
Some Basic Ruby . 7
Arrays and Hashes . 9
Control Structures . 10
Regular Expressions . 11
Blocks and Iterators . 12
Reading and ’Riting . 14
Onward and Upward . 15

3 CLASSES, OBJECTS, AND VARIABLES 17
Inheritance and Messages . 19
Objects and Attributes . 21
Class Variables and Class Methods . 24
Access Control . 27
Variables . 29

4 CONTAINERS, BLOCKS, AND ITERATORS 31
Containers . 31
Blocks and Iterators . 36

5 STANDARD TYPES 45
Numbers . 45
Strings . 47
Ranges . 51
Regular Expressions . 53

6 MORE ABOUT METHODS 61
Defining a Method . 61

ix

x CONTENTS

Calling a Method . 63

7 EXPRESSIONS 67
Operator Expressions . 67
Miscellaneous Expressions . 68
Assignment . 69
Conditional Execution . 72
Case Expressions . 76
Loops . 77
Variable Scope and Loops . 82

8 EXCEPTIONS, CATCH, AND THROW 83
The Exception Class . 83
Handling Exceptions . 84
Raising Exceptions . 87
Catch and Throw . 89

9 MODULES 91
Namespaces . 91
Mixins . 92
Iterators and the Enumerable Module . 96
Including Other Files . 96

10 BASIC INPUT AND OUTPUT 99
What Is an IO Object? . 99
Opening and Closing Files . 99
Reading and Writing Files . 100
Talking to Networks . 102

11 THREADS AND PROCESSES 105
Multithreading . 105
Controlling the Thread Scheduler . 108
Mutual Exclusion . 109
Running Multiple Processes . 112

12 WHEN TROUBLE STRIKES 115
Ruby Debugger . 115
Interactive Ruby . 116
But It Doesn’t Work! . 117
But It’s Too Slow! . 119

PART II—RUBY IN ITS SETTING

13 RUBY AND ITS WORLD 125
Command-Line Arguments . 125
Program Termination . 128

CONTENTS xi

Environment Variables . 128
Where Ruby Finds Its Modules . 129
Build Environment . 130

14 RUBY AND THE WEB 131
Writing CGI Scripts . 131
Embedding Ruby in HTML . 135
Improving Performance . 137

15 RUBY TK 139
Simple Tk Application . 139
Widgets . 140
Binding Events . 143
Canvas . 144
Scrolling . 145
Translating from Perl/Tk Documentation 147

16 RUBY AND MICROSOFT WINDOWS 149
Ruby Ports . 149
Running Ruby Under Windows . 149
Win32API . 150
Windows Automation . 150

17 EXTENDING RUBY 153
Ruby Objects in C . 153
Writing Ruby in C . 155
Sharing Data Between Ruby and C . 157
Memory Allocation . 163
Creating an Extension . 163
Embedding a Ruby Interpreter . 167
Bridging Ruby to Other Languages . 168
Ruby C Language API . 169

PART III—RUBY CRYSTALLIZED

18 THE RUBY LANGUAGE 181
Source Layout . 181
The Basic Types . 183
Names . 190
Variables and Constants . 192

Predefined Variables . 194
Expressions . 198

Boolean Expressions . 200
if and unless Expressions . 202
case Expressions . 203
Loop Constructs . 203

xii CONTENTS

Method Definition . 204
Invoking a Method . 206
Aliasing . 208
Class Definition . 209
Module Definitions . 211
Access Control . 212
Blocks, Closures, and Proc Objects . 212
Exceptions . 213
Catch and Throw . 215

19 CLASSES AND OBJECTS 217
How Classes and Objects Interact . 217
Class and Module Definitions . 223
Top-Level Execution Environment . 228
Inheritance and Visibility . 228
Freezing Objects . 229

20 LOCKING RUBY IN THE SAFE 231
Safe Levels . 232
Tainted Objects . 232

21 REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY 235
Looking at Objects . 236
Looking at Classes . 237
Calling Methods Dynamically . 238
System Hooks . 240
Tracing Your Program’s Execution . 242
Marshaling and Distributed Ruby . 244
Compile Time? Runtime? Anytime! . 246

PART IV—RUBY LIBRARY REFERENCE

22 BUILT-IN CLASSES 251
Alphabetical Listing . 252

Array . 254
Bignum . 265
Binding . 266
Class . 267
Continuation . 268
Dir . 269
Exception . 273
FalseClass . 274
File . 275
File::Stat . 281
Fixnum . 286
Float . 287

CONTENTS xiii

Hash . 289
Integer . 295
IO . 297
MatchData . 307
Method . 309
Module . 310
NilClass . 318
Numeric . 319
Object . 321
Proc . 327
Range . 329
Regexp . 331
String . 333
Struct . 348
Struct::Tms . 351
Symbol . 351
Thread . 352
ThreadGroup . 358
Time . 359
TrueClass . 365

23 BUILT-IN MODULES 367
Alphabetical Listing . 367

Comparable . 368
Enumerable . 369
Errno . 372
FileTest . 372
GC . 375
Kernel . 375
Marshal . 391
Math . 392
ObjectSpace . 393
Process . 394

24 STANDARD LIBRARY 399
Complex . 399
Date . 401
English . 406
Find . 407
File . 407
GetoptLong . 409
mkmf . 412
ParseDate . 413
profile . 414
PStore . 414
Tempfile . 416
Mutex . 417
ConditionVariable . 418

xiv CONTENTS

timeout . 419
WeakRef . 419

25 OBJECT-ORIENTED DESIGN LIBRARIES 421
visitor . 421
delegate . 422
observer . 424
singleton . 426

26 NETWORK AND WEB LIBRARIES 427
Socket-Level Access . 427

BasicSocket . 428
IPSocket . 430
TCPSocket . 430
SOCKSSocket . 431
TCPServer . 432
UDPSocket . 432
UNIXSocket . 434
UNIXServer . 435
Socket . 435

Higher-Level Access . 439
Net::FTP . 439
Net::HTTP . 443
Net::HTTPResponse . 445
Net::POP . 445
Net::APOP . 447
Net::POPMail . 447
Net::SMTP . 448
Net::Telnet . 449

CGI Development . 452
CGI . 452
CGI::Session . 457

27 MICROSOFT WINDOWS SUPPORT 459
WIN32OLE . 459
WIN32OLE_EVENT . 460
Win32API . 461

PART V—APPENDICES

A EMBEDDED DOCUMENTATION 465
Inline Formatting . 468
Cross References . 468
Method Names . 469
Including Other Files . 469
Using rdtool . 469

CONTENTS xv

Mandatory Disclaimer . 470

B INTERACTIVE RUBY SHELL 471
Command Line . 471
Initialization File . 471
Commands . 473
Restrictions . 475
rtags, xmp, and the Frame Class . 476

C SUPPORT 479
Web Sites . 479
Download Sites . 480
Usenet Newsgroup . 480
Mailing Lists . 480
Bug Reporting . 480

D BIBLIOGRAPHY 483

INDEX 485

List of Tables

2.1 Example variable and class names . 10

5.1 Character class abbreviations . 56

7.1 Common comparison operators . 74

12.1 Debugger commands . 122

13.1 Environment variables used by Ruby 129

14.1 Command-line options for eruby . 136

17.1 C/Ruby datatype conversion functions and macros 157

18.1 General delimited input . 182
18.2 Substitutions in double-quoted strings 185
18.3 Reserved words . 191
18.4 Ruby operators (high to low precedence) 199
18.5 Mapping from element reference to method call 200

20.1 Definition of the safe levels . 234

22.1 Class Array: pack directives . 260
22.2 Class File: path separators . 278
22.3 Class File: open-mode constants . 279
22.4 Class File: lock-mode constants . 281
22.5 Class IO: mode strings . 298
22.6 Class Numeric: divmod, modulo, and remainder 321
22.7 Class String: backslash sequences in substitution strings 340
22.8 Class String: unpack directives . 347
22.9 Class Time: strftime directives . 363

23.1 Module Kernel: sprintf flag characters 388
23.2 Module Kernel: sprintf field types 388
23.3 Module Kernel: file tests with a single argument 390
23.4 Module Kernel: file tests with two arguments 390

24.1 Class Date: parts of a date . 403

26.1 Library CGI: HTML tags available as methods 457

xvii

xviii LIST OF TABLES

B.1 irb command-line options . 472
B.2 irb configuration values . 472

List of Figures

3.1 Variables hold object references . 30

4.1 How arrays are indexed . 33

8.1 Ruby exception hierarchy . 84

12.1 Sample irb session . 118

17.1 Wrapping objects around C datatypes 160
17.2 Building an extension . 165

18.1 State transitions for boolean range . 203

19.1 A basic object, with its class and superclass 219
19.2 Adding a metaclass to Guitar . 220
19.3 Adding a singleton class to an object 221
19.4 An included module and its proxy class 223

22.1 Standard exception hierarchy . 274

26.1 Socket class hierarchy . 429
26.2 Output of sample CGI code . 454

A.1 rd source file . 466
A.2 Output from source in Figure A.1 . 467

xix

Foreword

Man is driven to create; I know I really love to create things. And while I’m not good
at painting, drawing, or music, I can write software.

Shortly after I was introduced to computers, I became interested in programming lan-
guages. I believed that an ideal programming language must be attainable, and I wanted
to be the designer of it. Later, after gaining some experience, I realized that this kind of
ideal, all-purpose language might be more difficult than I had thought. But I was still
hoping to design a language that would work for most of the jobs I did everyday. That
was my dream as a student.

Years later I talked with colleagues about scripting languages, about their power and
possibility. As an object-oriented fan for more than fifteen years, it seemed to me that
OO programming was very suitable for scripting too. I did some research on the ’net
for a while, but the candidates I found, Perl and Python, were not exactly what I was
looking for. I wanted a language more powerful than Perl, and more object-oriented
than Python.

Then, I remembered my old dream, and decided to design my own language. At first I
was just toying around with it at work. But gradually it grew to be a tool good enough
to replace Perl. I named it Ruby—after the precious red stone—and released it to the
public in 1995.

Since then a lot of people have become interested in Ruby. Believe it or not, Ruby is
actually more popular than Python in Japan right now. I hope that eventually it will be
just as well received all over the world.

I believe that the purpose of life is, at least in part, to be happy. Based on this belief,
Ruby is designed to make programming not only easy, but also fun. It allows you to
concentrate on the creative side of programming, with less stress. If you don’t believe
me, read this book and try Ruby. I’m sure you’ll find out for yourself.

I’m very thankful to the people who have joined the Ruby community; they have helped
me a lot. I almost feel like Ruby is one of my children, but in fact, it is the result of the
combined efforts of many people. Without their help, Ruby could never have become
what it is.

I am especially thankful to the authors of this book, Dave Thomas and Andy Hunt.
Ruby has never been a well-documented language. Because I have always preferred
writing programs over writing documents, the Ruby manuals tend to be less thorough
than they should be. You had to read the source to know the exact behavior of the
language. But now Dave and Andy have done the work for you.

xxi

xxii FOREWORD

They became interested in a lesser-known language from the Far East. They researched
it, read thousands of lines of source code, wrote uncountable test scripts and e-mails,
clarified the ambiguous behavior of the language, found bugs (and even fixed some of
them), and finally compiled this great book. Ruby is certainly well documented now!

Their work on this book has not been trivial. While they were writing it, I was modi-
fying the language itself. But we worked together on the updates, and this book is as
accurate as possible.

It is my hope that both Ruby and this book will serve to make your programming easy
and enjoyable. Have fun!

Yukihiro Matsumoto, a.k.a. “Matz”

Japan, October 2000

Preface

This book is a tutorial and reference for the Ruby programming language. Use Ruby,
and you’ll write better code, be more productive, and enjoy programming more.

These are bold claims, but we think that after reading this book you’ll agree with them.
And we have the experience to back up this belief.

As Pragmatic Programmers we’ve tried many, many languages in our search for tools
to make our lives easier, for tools to help us do our jobs better. Until now, though, we’d
always been frustrated by the languages we were using.

Our job is to solve problems, not spoonfeed compilers, so we like dynamic languages
that adapt to us, without arbitrary, rigid rules. We need clarity so we can communicate
using our code. We value conciseness and the ability to express a requirement in code
accurately and efficiently. The less code we write, the less that can go wrong. (And our
wrists and fingers are thankful, too.)

We want to be as productive as possible, so we want our code to run the first time; time
spent in the debugger is time stolen from the development clock. It also helps if we can
try out code as we edit it; if you have to wait for a 2-hour make cycle, you may as well
be using punch cards and submitting your work for batch compilation.

We want a language that works at a high level of abstraction. The higher level the
language, the less time we spend translating our requirements into code.

When we discovered Ruby, we realized that we’d found what we’d been looking for.
More than any other language with which we have worked, Ruby stays out of your
way. You can concentrate on solving the problem at hand, instead of struggling with
compiler and language issues. That’s how it can help you become a better programmer:
by giving you the chance to spend your time creating solutions for your users, not for
the compiler.

Ruby Sparkles
Take a true object-oriented language, such as Smalltalk. Drop the unfamiliar syntax and
move to more conventional, file-based source code. Now add in a good measure of the
flexibility and convenience of languages such as Python and Perl.

You end up with Ruby.

OO aficionados will find much to like in Ruby: things such as pure object orientation
(everything’s an object), metaclasses, closures, iterators, and ubiquitous heterogeneous

xxiii

xxiv PREFACE

collections. Smalltalk users will feel right at home (and C++ and Java users will feel
jealous).

At the same time, Perl and Python wizards will find many of their favorite features:
full regular expression support, tight integration with the underlying operating system,
convenient shortcuts, and dynamic evaluation.

Ruby is easy to learn. Everyday tasks are simple to code, and once you’ve done them,
they are easy to maintain and grow. Apparently difficult things often turn out not to
have been difficult after all. Ruby follows the Principle of Least Surprise—things work
the way you would expect them to, with very few special cases or exceptions. And that
really does make a difference when you’re programming.

We call Ruby a transparent language. By that we mean that Ruby doesn’t obscure
the solutions you write behind lots of syntax and the need to churn out reams of sup-
port code just to get simple things done. With Ruby you write programs close to the
problem domain. Rather than constantly mapping your ideas and designs down to the
pedestrian level of most languages, with Ruby you’ll find you can express them directly
and express them elegantly. This means you code faster. It also means your programs
stay readable and maintainable.

Using Ruby, we are constantly amazed at how much code we can write in one sitting,
code that works the first time. There are very few syntax errors, no type violations, and
far fewer bugs than usual. This makes sense: there’s less to get wrong. No bothersome
semicolons to type mechanically at the end of each line. No troublesome type declara-
tions to keep in sync (especially in separate files). No unnecessary words just to keep
the compiler happy. No error-prone framework code.

So why learn Ruby? Because we think it will help you program better. It will help you
to focus on the problem at hand, with fewer distractions. It will make your life easier.

What Kind of Language Is Ruby?
In the old days, the distinction between languages was simple: they were either com-
piled, like C or Fortran, or interpreted, like BASIC. Compiled languages gave you speed
and low-level access; interpreted languages were higher-level but slower.

Times change, and things aren’t that simple anymore. Some language designers have
taken to calling their creations “scripting languages.” By this, we guess they mean that
their languages are interpreted and can be used to replace batch files and shell scripts,
orchestrating the behavior of other programs and the underlying operating system. Perl,
TCL, and Python have all been called scripting languages.

What exactly is a scripting language? Frankly we don’t know if it’s a distinction worth
making. In Ruby, you can access all the underlying operating system features. You
can do the same stuff in Ruby that you can in Perl or Python, and you can do it
more cleanly. But Ruby is fundamentally different. It is a true programming language,
too, with strong theoretical roots and an elegant, lightweight syntax. You could hack
together a mess of “scripts” with Ruby, but you probably won’t. Instead, you’ll be more

PREFACE xxv

inclined to engineer a solution, to produce a program that is easy to understand, simple
to maintain, and a piece of cake to extend and reuse in the future.

Although we have used Ruby for scripting jobs, most of the time we use it as a general-
purpose programming language. We’ve used it to write GUI applications and middle-
tier server processes, and we’re using it to format large parts of this book. Others have
used it for managing server machines and databases. Ruby is serving Web pages, inter-
facing to databases and generating dynamic content. People are writing artificial intel-
ligence and machine learning programs in Ruby, and at least one person is using it to
investigate natural evolution. Ruby’s finding a home as a vehicle for exploratory math-
ematics. And people all over the world are using it as a way of gluing together all their
different applications. It truly is a great language for producing solutions in a wide
variety of problem domains.

Is Ruby for Me?
Ruby is not the universal panacea for programmers’ problems. There will always be
times when you’ll need a particular language: the environment may dictate it, you may
have special libraries you need, performance concerns, or simply an issue with training.
We haven’t given up languages such as Java and C++ entirely (although there are times
when we wish we could).

However, Ruby is probably more applicable than you might think. It is easy to extend,
both from within the language and by linking in third-party libraries. It is portable
across a number of platforms. It’s relatively lightweight and consumes only modest
system resources. And it’s easy to learn; we’ve known people who’ve put Ruby code
into production systems within a day of picking up drafts of this book. We’ve used
Ruby to implement parts of an X11 window manager, a task that’s normally considered
severe C coding. Ruby excelled, and helped us write code in hours that would otherwise
have taken days.

Once you get comfortable with Ruby, we think you’ll keep coming back to it as your
language of choice.

Why Did We Write This Book?
So we’d just finished writing The Pragmatic Programmer, our families had just started
talking to us again, and suddenly we felt the need to write another book. Why? We
guess it comes down to a kind of missionary zeal.

Ruby was created by Yukihiro Matsumoto (Matz) in Japan. Since 1995, its popularity in
Japan has grown at an astounding rate; there are rumors that Ruby is more popular than
Python in Japan. But to date, much of the detailed Ruby documentation is in Japanese.
It probably isn’t a programming language you’d just stumble across.

xxvi PREFACE

We wanted to spread the word, to have more people outside Japan using Ruby and
enjoying the benefits, so we decided to document Ruby in English. And what started
out as a small project just sort of grew. . . .

Ruby Versions
This book documents Version 1.6 of Ruby, which was released in September 2000.

Ruby version numbering follows the same scheme used for many other open source
projects. Releases with even subversion numbers (1.0, 1.2, 1.4, and so on) are stable,
public releases. These are the releases that are prepackaged and made available on the
various Ruby Web sites.

Development versions of the software have odd subversion numbers, such as 1.1 and
1.3. These you’ll have to download and build for yourself, as described in the box on
page xxvii.

Installing Ruby
You can get Ruby from ftp://ftp.netlab.co.jp/pub/lang/ruby, or from the
mirror sites listed on page 480 in Appendix C. There you will find the latest stable
release, as well as various development releases.

You’ll always find source code releases of Ruby; you may also find prebuilt binaries for
Windows or other operating systems (like the binary distribution of Ruby for Windows
at www.pragmaticprogrammer.com/ruby/downloads/ruby-install.html).

Building Ruby
In the Ruby distribution you’ll find a file named README, which explains the installation
procedure in detail. To summarize, you build Ruby on POSIX-based systems using the
same four commands you use for most other open source applications: ./configure,
make, make test, and make install. You can build Ruby under other environments
(including Windows) by using a POSIX emulation environment such as cygwin1 or by
using native compilers—see “ntsetup.bat” in the distribution’s win32 subdirectory
as a starting point.

Running Ruby
Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
environments, there are two ways to run Ruby—interactively and as a program.

1. See sourceware.cygnus.com/cygwin for details.

ftp://ftp.netlab.co.jp/pub/lang/ruby
www.pragmaticprogrammer.com/ruby/downloads/ruby-install.html
sourceware.cygnus.com/cygwin

PREFACE xxvii

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use CVS (Concurrent Version System, freely
available from www.cvshome.com) as their revision control system.
You can check files out as an anonymous user from their archive by
executing the following CVS commands:

% cvs -d :pserver:anonymous@cvs.netlab.co.jp:/home/cvs←↩
login

(Logging in to anonymous@cvs.netlab.co.jp)
CVS password: guest
% cvs -d :pserver:anonymous@cvs.netlab.co.jp:/home/cvs←↩

checkout ruby

The complete source code tree, just as the developers last left it, will
now be copied to a “ruby” subdirectory on your machine, updating
your local source tree from a repository on the other side of the world.
Isn’t it a great time to be alive?

Interactive Ruby

The easiest way to run Ruby interactively is simply to type “ruby” at the shell prompt.

% ruby

puts "Hello, world!"

^D

Hello, world!

Here we typed in the single puts expression and an end of file character (which is
control-D on our system). This process works, but it’s sort of painful if you make a
typo, and you can’t really see what’s going on as you type.

In the sample directory in the Ruby distribution you’ll find a script named “eval.rb”.
It goes one step better by showing us the value of each expression as it is entered:

% cd sample

% ruby eval.rb

ruby> a = "Hello, world!"

"Hello, world!"

ruby> puts a

Hello, world!

nil

ruby> ^D

%

Here we can see the output from puts, and then the return value from puts (which is
nil).

www.cvshome.com

xxviii PREFACE

That’s all fine and well, except that multiline expressions do not work, and you can’t
edit the line you’re on, or go back and use previous lines (as you might with command
history in a shell).

For the next step up from eval.rb, we have irb—Interactive Ruby. irb is a Ruby
Shell, complete with command-line history, line editing capabilities, and job control.
It is quite configurable and has many options, so much so that it has its own appendix
beginning on page 471. We recommend that you get familiar with irb so you can try
some of our examples interactively.

Ruby Programs
Finally, you can run a Ruby program from a file as you would any other shell script,
Perl program, or Python program. You can simply run Ruby giving the script name as
an argument:

% ruby myprog.rb

Or you can use the Unix “shebang” notation as the first line of the program file.2

#!/usr/local/bin/ruby -w

puts "Hello, World!"

If you make this source file executable (using, for instance, chmod +x myprog.rb),
Unix lets you run the file as a program:

% ./myprog.rb

Hello, World!

You can do something similar under Microsoft Windows using file associations.

Resources
Visit the Ruby Web sites, www.rubycentral.com and www.ruby-lang.org, to see
what’s new, and chat with other Ruby users on the newsgroup or mailing lists (see
Appendix C).

And we’d certainly appreciate hearing from you. Comments, suggestions, errors in the
text, and problems in the examples are all welcome. E-mail us at:

rubybook@pragmaticprogrammer.com

If you tell us about errors in the book, we’ll add them to the errata list at:

http://www.pragmaticprogrammer.com/ruby/errata/errata.html

Finally, www.pragmaticprogrammer.com/ruby also contains the source code for
almost all the book’s examples, organized by page.

2. If your system supports it, you can avoid hard-coding the path to Ruby in the shebang line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

www.rubycentral.com
www.ruby-lang.org
rubybook@pragmaticprogrammer
com
http://www.pragmaticprogrammer.com/ruby/errata/errata.html
www.pragmaticprogrammer.com/ruby

PREFACE xxix

Acknowledgments
A book is a massive undertaking, one that we would never be able to complete with-
out help from our all our friends, old and new. We’re proud to count among our old
friends the team at Addison-Wesley: Mike Hendrickson, John Fuller, the ever-helpful
Julie Steele, and the wonderful Julie DiNicola. Thank you all.

Our reviewers were fantastic. We put them up against some incredibly tight dead-
lines and they came through for us. Reviewing a book full of technical detail
isn’t easy, so we’re especially grateful to George Coe, Bob Davison, Jeff Deifik,
Hal Fulton, Tadayoshi Funaba, Clemens Hintze, Kazuhiro Hiwada, Kikutani Makoto,
Mike Linksvayer, Aleksi Niemelä, Lew Perin, Jared Richardson, Armin Roehrl,
Conrad Schneiker, Patrick Schoenbach, and Eric Vought. Thanks also go to the two
Julies at Addison-Wesley for coordinating this truly international effort.

Several people helped us with specific areas of this book. Tadayoshi Funaba exchanged
countless e-mails with us until we finally understood the Date module. Guy Decoux
and Clemens Hintze patiently answered our questions about writing Ruby extensions,
and Masaki Suketa helped us understand the WinOLE module.

Although much of the original Ruby documentation is in Japanese, there is a growing
body of English translations, mostly undertaken by Japanese developers whose skills
with English never cease to amaze us. Although there are too many individual contri-
butions to this effort to name each author, we would like to single out Goto Kentaro,
who has produced a large volume of high-quality documentation and placed it online.

Finally, we have to thank Yukihiro “Matz” Matsumoto, the creator of Ruby. We’ve lost
count of the number of questions we’ve asked of him, and the number of patient and
detailed answers he’s sent back. As well as creating a truly wonderful language, Matz
has fostered a wonderfully supportive and open culture in which that language can
prosper.

Thank you all. Domo arigato gozaimasu.

Dave Thomas and Andy Hunt
THE PRAGMATIC PROGRAMMERS

www.pragmaticprogrammer.com

www.pragmaticprogrammer.
com

xxx PREFACE

Notation Conventions
Throughout this book, we use the following typographic notations.

Literal code examples are shown using a typewriter-like font:

class SampleCode

def run

#...

end

end

Within the text, Fred#doIt is a reference to an instance method (doIt) of class Fred,
while Fred.new3 is a class method, and Fred::EOF is a class constant.

The book contains many snippets of Ruby code. Where possible, we’ve tried to show
what happens when they run. In simple cases, we show the value of expressions on the
same line as the expression. For example:

a = 1

b = 2

a + b → 3

At times, we’re also interested in the values of assignment statements, in which case
we’ll show them.

a = 1 → 1

b = 2 → 2

a + b → 3

If the program produces more complex output, we show it below the program code:

3.times { puts "Hello!" }

produces:
Hello!

Hello!

Hello!

In some of the library documentation, we wanted to show where spaces appear in the
output. You’ll see these spaces as “ ” characters.

Command-line invocations are shown with literal text in a Roman font, and parameters
you supply in an italic font. Optional elements are shown in large square brackets.

ruby [flags, ...] [progname] arguments [, arguments]...

3. In some other Ruby documentation, you may see class methods written as Fred::new. This is per-
fectly valid Ruby syntax; we just happen to feel that Fred.new is less distracting to read.

Chapter 1

Roadmap

The main text of this book has four separate parts, each with its own personality, and
each addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts off with a short chapter
on some of the terminology and concepts that are unique to Ruby. This chapter also
includes enough basic syntax so that the other chapters will make sense. The rest of the
tutorial is a top-down look at the language. There we talk about classes and objects,
types, expressions, and all the other things that make up the language. We even end
with a short chapter on digging yourself out when trouble strikes.

One of the great things about Ruby is how well it integrates with its environment.
Part II, Ruby in Its Setting, investigates this. Here you’ll find practical information on
running Ruby, and using Ruby with the Web. You’ll learn how to create GUI applica-
tions using Tk, and how to use Ruby in a Microsoft Windows environment, including
wonderful things such as making native API calls, COM integration, and Windows
Automation. And you’ll discover just how easy it is to extend Ruby and to embed
Ruby within your own code.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll find all the
gory details about the language, the metaclass model, tainting, reflection, and marshal-
ing. You could probably speed-read this the first time through, but we found ourselves
using the tables in this section even as we were writing the rest of the book.

The Ruby Library Reference is Part IV. It’s big. We document over 800 methods in
more than 40 built-in classes and modules. On top of that, we have another 70 pages
describing some of the more useful library modules that come with Ruby.

So, how should you read this book? Well, it depends on you.

Depending on your level of expertise with programming in general, and OO in partic-
ular, you may want to read just a few portions of the book to start with. Here are our
recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep
the library reference close at hand as you start to write programs. Get familiar with
the basic classes such as Array, Hash, and String. As you become more comfortable
in the environment, you may want to investigate some of the more advanced topics in
Part III.

1

2 CHAPTER 1. ROADMAP

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we’d suggest
reading the introduction in Chapter 2 first. From there, you may want to take the slower
approach and keep going with the tutorial that follows, or skip ahead to the gritty details
starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the
language reference in Chapter 18, which begins on page 181, skim the library reference,
then use the book as a (rather attractive) coffee coaster.

Of course, there’s nothing wrong with just starting at the beginning and working your
way through.

And don’t forget, if you run into a problem that you can’t figure out, help is available.
See Appendix C beginning on page 479 for more information.

Part I

Facets of Ruby

3

Chapter 2

Ruby.new

When we originally wrote this book, we had a grand plan (we were younger then). We
wanted to document the language from the top down, starting with classes and objects,
and ending with the nitty-gritty syntax details. It seemed like a good idea at the time.
After all, most everything in Ruby is an object, so it made sense to talk about objects
first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write
examples of classes. Throughout our top-down description, we kept coming across
low-level details we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing).
We’d still describe Ruby starting at the top. But before we did that, we’d add a short
chapter that described all the common language features used in the examples along
with the special vocabulary used in Ruby, a kind of minitutorial to bootstrap us into the
rest of the book.

Ruby Is an Object-Oriented Language
Let’s say it again. Ruby is a genuine object-oriented language. Everything you manip-
ulate is an object, and the results of those manipulations are themselves objects. How-
ever, many languages make the same claim, and they often have a different interpreta-
tion of what object-oriented means and a different terminology for the concepts they
employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that
we’ll be using.

When you write object-oriented code, you’re normally looking to model concepts from
the real world in your code. Typically during this modeling process you’ll discover
categories of things that need to be represented in code. In a jukebox, the concept of
a “song” might be such a category. In Ruby, you’d define a class to represent each of
these entities. A class is a combination of state (for example, the name of the song) and
methods that use that state (perhaps a method to play the song).

5

6 CHAPTER 2. RUBY.NEW

Once you have these classes, you’ll typically want to create a number of instances
of each. For the jukebox system containing a class called Song, you’d have separate
instances for popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String of
Pearls,” “Small talk,” and so on. The word object is used interchangeably with class
instance (and being lazy typists, we’ll probably be using the word “object” more fre-
quently).

In Ruby, these objects are created by calling a constructor, a special method associated
with a class. The standard constructor is called new.

song1 = Song.new("Ruby Tuesday")

song2 = Song.new("Enveloped in Python")

and so on

These instances are both derived from the same class, but they have unique charac-
teristics. First, every object has a unique object identifier (abbreviated as object id).
Second, you can define instance variables, variables with values that are unique to
each instance. These instance variables hold an object’s state. Each of our songs, for
example, will probably have an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of func-
tionality which may be called from within the class and (depending on accessibility
constraints) from outside. These instance methods in turn have access to the object’s
instance variables, and hence to the object’s state.

Methods are invoked by sending a message to an object. The message contains the
method’s name, along with any parameters the method may need.1 When an object
receives a message, it looks into its own class for a corresponding method. If found,
that method is executed. If the method isn’t found, . . . well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is
very natural. Let’s look at some method calls. (Remember that the arrows in the code
examples show the values returned by the corresponding expressions.)

"gin joint".length → 9

"Rick".index("c") → 2

-1942.abs → 1942

sam.play(aSong) → "duh dum, da dum de dum ..."

Here, the thing before the period is called the receiver, and the name after the period is
the method to be invoked. The first example asks a string for its length, and the second
asks a different string to find the index of the letter “c.” The third line has a number
calculate its absolute value. Finally, we ask Sam to play us a song.

It’s worth noting here a major difference between Ruby and most other languages. In
(say) Java, you’d find the absolute value of some number by calling a separate function
and passing in that number. You might write

number = Math.abs(number) // Java code

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

SOME BASIC RUBY 7

In Ruby, the ability to determine an absolute value is built into numbers—they take
care of the details internally. You simply send the message abs to a number object and
let it do the work.

number = number.abs

The same applies to all Ruby objects: in C you’d write strlen(name), while in Ruby
it’s name.length, and so on. This is part of what we mean when we say that Ruby is
a genuine OO language.

Some Basic Ruby
Not many people like to read heaps of boring syntax rules when they’re picking up a
new language. So we’re going to cheat. In this section we’ll hit some of the highlights,
the stuff you’ll just have to know if you’re going to write Ruby programs. Later, in
Chapter 18, which begins on page 181, we’ll go into all the gory details.

Let’s start off with a simple Ruby program. We’ll write a method that returns a string,
adding to that string a person’s name. We’ll then invoke that method a couple of times.

def sayGoodnight(name)

result = "Goodnight, " + name

return result

end

Time for bed...

puts sayGoodnight("John-Boy")

puts sayGoodnight("Mary-Ellen")

First, some general observations. Ruby syntax is clean. You don’t need semicolons
at the ends of statements as long as you put each statement on a separate line. Ruby
comments start with a # character and run to the end of the line. Code layout is pretty
much up to you; indentation is not significant.

Methods are defined with the keyword def, followed by the method name (in this case,
“sayGoodnight”) and the method’s parameters between parentheses. Ruby doesn’t
use braces to delimit the bodies of compound statements and definitions. Instead, you
simply finish the body with the keyword end. Our method’s body is pretty simple.
The first line concatenates the literal string “Goodnight, ” to the parameter name and
assigns the result to the local variable result. The next line returns that result to the
caller. Note that we didn’t have to declare the variable result; it sprang into existence
when we assigned to it.

Having defined the method, we call it twice. In both cases we pass the result to the
method puts, which simply outputs its argument followed by a newline.

Goodnight, John-Boy

Goodnight, Mary-Ellen

The line “puts sayGoodnight("John-Boy")” contains two method calls, one to
sayGoodnight and the other to puts. Why does one call have its arguments in paren-
theses while the other doesn’t? In this case it’s purely a matter of taste. The following
lines are all equivalent.

8 CHAPTER 2. RUBY.NEW

puts sayGoodnight "John-Boy"

puts sayGoodnight("John-Boy")

puts(sayGoodnight "John-Boy")

puts(sayGoodnight("John-Boy"))

However, life isn’t always that simple, and precedence rules can make it difficult to
know which argument goes with which method invocation, so we recommend using
parentheses in all but the simplest cases.

This example also shows some Ruby string objects. There are many ways to create
a string object, but probably the most common is to use string literals: sequences of
characters between single or double quotation marks. The difference between the two
forms is the amount of processing Ruby does on the string while constructing the literal.
In the single-quoted case, Ruby does very little. With a few exceptions, what you type
into the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions—
sequences that start with a backslash character—and replaces them with some binary
value. The most common of these is “\n”, which is replaced with a newline character.
When a string containing a newline is output, the “\n” forces a line break.

puts "And Goodnight,\nGrandma"

produces:

And Goodnight,

Grandma

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression.
We could use this to rewrite our previous method.

def sayGoodnight(name)

result = "Goodnight, #{name}"

return result

end

When Ruby constructs this string object, it looks at the current value of name and
substitutes it into the string. Arbitrarily complex expressions are allowed in the #{...}
construct. As a shortcut, you don’t need to supply the braces when the expression is
simply a global, instance, or class variable. For more information on strings, as well as
on the other Ruby standard types, see Chapter 5, which begins on page 45.

Finally, we could simplify this method some more. The value returned by a Ruby
method is the value of the last expression evaluated, so we can get rid of the return

statement altogether.

def sayGoodnight(name)

"Goodnight, #{name}"

end

We promised that this section would be brief. We’ve got just one more topic to cover:
Ruby names. For brevity, we’ll be using some terms (such as class variable) that we
aren’t going to define here. However, by talking about the rules now, you’ll be ahead of
the game when we actually come to discuss instance variables and the like later.

ARRAYS AND HASHES 9

Ruby uses a convention to help it distinguish the usage of a name: the first characters
of a name indicate how the name is used. Local variables, method parameters, and
method names should all start with a lowercase letter or with an underscore. Global
variables are prefixed with a dollar sign ($), while instance variables begin with an “at”
sign (@). Class variables start with two “at” signs (@@). Finally, class names, module
names, and constants should start with an uppercase letter. Samples of different names
are given in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and
underscores (with the proviso that the character following an @ sign may not be a
digit).

Arrays and Hashes
Ruby’s arrays and hashes are indexed collections. Both store collections of objects,
accessible using a key. With arrays, the key is an integer, whereas hashes support any
object as a key. Both arrays and hashes grow as needed to hold new elements. It’s more
efficient to access array elements, but hashes provide more flexibility. Any particular
array or hash can hold objects of differing types; you can have an array containing an
integer, a string, and a floating point number, as we’ll see in a minute.

You can create and initialize a new array using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements
by supplying an index between square brackets, as the next example shows.

a = [1, ’cat’, 3.14] # array with three elements

access the first element

a[0] → 1

set the third element

a[2] = nil

dump out the array

a → [1, "cat", nil]

You can create empty arrays either by using an array literal with no elements or by
using the array object’s constructor, Array.new.

empty1 = []

empty2 = Array.new

Sometimes creating arrays of words can be a pain, what with all the quotes and com-
mas. Fortunately, there’s a shortcut: %w does just what we want.

a = %w{ ant bee cat dog elk }

a[0] → "ant"

a[3] → "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the
value.

For example, you might want to map musical instruments to their orchestral sections.
You could do this with a hash.

10 CHAPTER 2. RUBY.NEW

Table 2.1. Example variable and class names

Variables Constants and
Local Global Instance Class Class Names

name $debug @name @@total PI

fishAndChips $CUSTOMER @point_1 @@symtab FeetPerMile

x_axis $_ @X @@N String

thx1138 $plan9 @_ @@x_pos MyClass

_26 $Global @plan9 @@SINGLE Jazz_Song

instSection = {

’cello’ => ’string’,

’clarinet’ => ’woodwind’,

’drum’ => ’percussion’,

’oboe’ => ’woodwind’,

’trumpet’ => ’brass’,

’violin’ => ’string’

}

Hashes are indexed using the same square bracket notation as arrays.

instSection[’oboe’] → "woodwind"

instSection[’cello’] → "string"

instSection[’bassoon’] → nil

As the last example shows, a hash by default returns nil when indexed by a key it
doesn’t contain. Normally this is convenient, as nil means false when used in con-
ditional expressions. Sometimes you’ll want to change this default. For example, if
you’re using a hash to count the number of times each key occurs, it’s convenient to
have the default value be zero. This is easily done by specifying a default value when
you create a new, empty hash.

histogram = Hash.new(0)

histogram[’key1’] → 0

histogram[’key1’] = histogram[’key1’] + 1

histogram[’key1’] → 1

Array and hash objects have lots of useful methods: see the discussion starting on
page 31, and the reference sections starting on pages 254 and 289, for details.

Control Structures
Ruby has all the usual control structures, such as if statements and while loops. Java,
C, and Perl programmers may well get caught by the lack of braces around the bodies
of these statements. Instead, Ruby uses the keyword end to signify the end of a body.

if count > 10

puts "Try again"

elsif tries == 3

puts "You lose"

else

REGULAR EXPRESSIONS 11

puts "Enter a number"

end

Similarly, while statements are terminated with end.

while weight < 100 and numPallets <= 30

pallet = nextPallet()

weight += pallet.weight

numPallets += 1

end

Ruby statement modifiers are a useful shortcut if the body of an if or while statement
is just a single expression. Simply write the expression, followed by if or while and
the condition. For example, here’s a simple if statement.

if radiation > 3000

puts "Danger, Will Robinson"

end

Here it is again, rewritten using a statement modifier.

puts "Danger, Will Robinson" if radiation > 3000

Similarly, a while loop such as

while square < 1000

square = square*square

end

becomes the more concise

square = square*square while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Regular Expressions
Most of Ruby’s built-in types will be familiar to all programmers. A majority of lan-
guages have strings, integers, floats, arrays, and so on. However, until Ruby came along,
regular expression support was generally built into only the so-called scripting lan-
guages, such as Perl, Python, and awk. This is a shame: regular expressions, although
cryptic, are a powerful tool for working with text.

Entire books have been written about regular expressions (for example, Mastering Reg-
ular Expressions [Fri97]), so we won’t try to cover everything in just a short section.
Instead, we’ll look at just a few examples of regular expressions in action. You’ll find
full coverage of regular expressions starting on page 53.

A regular expression is simply a way of specifying a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing a pattern
between slash characters (/pattern/). And, Ruby being Ruby, regular expressions are of
course objects and can be manipulated as such.

For example, you could write a pattern that matches a string containing the text “Perl”
or the text “Python” using the following regular expression.

12 CHAPTER 2. RUBY.NEW

/Perl|Python/

The forward slashes delimit the pattern, which consists of the two things we’re match-
ing, separated by a pipe character (“|”). You can use parentheses within patterns, just
as you can in arithmetic expressions, so you could also have written this pattern as

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an
“a” followed by one or more “b”s, followed by a “c”. Change the plus to an asterisk,
and /ab*c/ creates a regular expression that matches an “a”, zero or more “b”s, and a
“c”.

You can also match one of a group of characters within a pattern. Some common exam-
ples are character classes such as “\s”, which matches a whitespace character (space,
tab, newline, and so on), “\d”, which matches any digit, and “\w”, which matches any
character that may appear in a typical word. The single character “.” (a period) matches
any character.

We can put all this together to produce some useful regular expressions.

/\d\d:\d\d:\d\d/ # a time such as 12:34:56

/Perl.*Python/ # Perl, zero or more other chars, then Python

/Perl\s+Python/ # Perl, one or more spaces, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Once you have created a pattern, it seems a shame not to use it. The match operator
“=~” can be used to match a string against a regular expression. If the pattern is found
in the string, =~ returns its starting position, otherwise it returns nil. This means you
can use regular expressions as the condition in if and while statements. For example,
the following code fragment writes a message if a string contains the text ’Perl’ or
’Python’.

if line =~ /Perl|Python/

puts "Scripting language mentioned: #{line}"

end

The part of a string matched by a regular expression can also be replaced with different
text using one of Ruby’s substitution methods.

line.sub(/Perl/, ’Ruby’) # replace first ’Perl’ with ’Ruby’

line.gsub(/Python/, ’Ruby’) # replace every ’Python’ with ’Ruby’

We’ll have a lot more to say about regular expressions as we go through the book.

Blocks and Iterators
This section briefly describes one of Ruby’s particular strengths. We’re about to look at
code blocks: chunks of code that you can associate with method invocations, almost as
if they were parameters. This is an incredibly powerful feature. You can use code blocks
to implement callbacks (but they’re simpler than Java’s anonymous inner classes), to
pass around chunks of code (but they’re more flexible than C’s function pointers), and
to implement iterators.

BLOCKS AND ITERATORS 13

Code blocks are just chunks of code between braces or do. . .end.

{ puts "Hello" } # this is a block

do #

club.enroll(person) # and so is this

person.socialize #

end #

Once you’ve created a block, you can associate it with a call to a method. That method
can then invoke the block one or more times using the Ruby yield statement. The
following example shows this in action. We define a method that calls yield twice.
We then call it, putting a block on the same line, after the call (and after any arguments
to the method).2

def callBlock

yield

yield

end

callBlock { puts "In the block" }

produces:

In the block

In the block

See how the code in the block (puts "In the block") is executed twice, once for
each call to yield.

You can provide parameters to the call to yield: these will be passed to the block.
Within the block, you list the names of the arguments to receive these parameters
between vertical bars (“|”).

def callBlock

yield "hello", 99

end

callBlock { |str, num| ... }

Code blocks are used throughout the Ruby library to implement iterators: methods that
return successive elements from some kind of collection, such as an array.

a = %w(ant bee cat dog elk) # create an array

a.each { |animal| puts animal } # iterate over the contents

produces:

ant

bee

cat

dog

elk

2. Some people like to think of the association of a block with a method as a kind of parameter passing.
This works on one level, but it isn’t really the whole story. You might be better off thinking of the block and
the method as coroutines, which transfer control back and forth between themselves.

14 CHAPTER 2. RUBY.NEW

Let’s look at how we might implement the Array class’s each iterator that we used
in the previous example. The each iterator loops through every element in the array,
calling yield for each one. In pseudo code, this might look like:

within class Array...

def each

for each element

yield(element)

end

end

You could then iterate over an array’s elements by calling its each method and supply-
ing a block. This block would be called for each element in turn.

[’cat’, ’dog’, ’horse’].each do |animal|

print animal, " -- "

end

produces:

cat -- dog -- horse --

Similarly, many looping constructs that are built into languages such as C and Java are
simply method calls in Ruby, with the methods invoking the associated block zero or
more times.

5.times { print "*" }

3.upto(6) {|i| print i }

(’a’..’e’).each {|char| print char }

produces:

*****3456abcde

Here we ask the number 5 to call a block five times, then ask the number 3 to call a
block, passing in successive values until it reaches 6. Finally, the range of characters
from “a” to “e” invokes a block using the method each.

Reading and ’Riting
Ruby comes with a comprehensive I/O library. However, in most of the examples in
this book we’ll stick to a few simple methods. We’ve already come across two methods
that do output. puts writes each of its arguments, adding a newline after each. print
also writes its arguments, but with no newline. Both can be used to write to any I/O
object, but by default they write to the console.

Another output method we use a lot is printf, which prints its arguments under the
control of a format string (just like printf in C or Perl).

printf "Number: %5.2f, String: %s", 1.23, "hello"

produces:

Number: 1.23, String: hello

ONWARD AND UPWARD 15

In this example, the format string "Number: %5.2f, String: %s" tells printf to
substitute in a floating point number (allowing five characters in total, with two after
the decimal point) and a string.

There are many ways to read input into your program. Probably the most traditional is
to use the routine gets, which returns the next line from your program’s standard input
stream.

line = gets

print line

The gets routine has a side effect: as well as returning the line just read, it also stores
it into the global variable $_. This variable is special, in that it is used as the default
argument in many circumstances. If you call print with no argument, it prints the
contents of $_. If you write an if or while statement with just a regular expression as
the condition, that expression is matched against $_. While viewed by some purists as a
rebarbative barbarism, these abbreviations can help you write some concise programs.
For example, the following program prints all lines in the input stream that contain the
word “Ruby.”

while gets # assigns line to $_

if /Ruby/ # matches against $_

print # prints $_

end

end

produces:
-:4: warning: regex literal in condition

The “Ruby way” to write this would be to use an iterator.

ARGF.each { |line| print line if line =~ /Ruby/ }

This uses the predefined object ARGF, which represents the input stream that can be
read by a program.

Onward and Upward
That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby.
We’ve had a brief look at objects, methods, strings, containers, and regular expressions,
seen some simple control structures, and looked at some rather nifty iterators. Hope-
fully, this chapter has given you enough ammunition to be able to attack the rest of this
book.

Time to move on, and up—up to a higher level. Next, we’ll be looking at classes and
objects, things that are at the same time both the highest-level constructs in Ruby and
the essential underpinnings of the entire language.

Chapter 3

Classes, Objects, and
Variables

From the examples we’ve shown so far, you might be wondering about our earlier asser-
tion that Ruby is an object-oriented language. Well, this chapter is where we justify that
claim. We’re going to be looking at how you create classes and objects in Ruby, and
at some of the ways in which Ruby is more powerful than most object-oriented lan-
guages. Along the way, we’ll be implementing part of our next billion-dollar product,
the Internet Enabled Jazz and Blue Grass jukebox.

After months of work, our highly paid Research and Development folks have deter-
mined that our jukebox needs songs. So it seems like a good idea to start off by setting
up a Ruby class that represents things that are songs. We know that a real song has a
name, an artist, and a duration, so we’ll want to make sure that the song objects in our
program do, too.

We’ll start off by creating a basic class Song,1 which contains just a single method,
initialize.

class Song

def initialize(name, artist, duration)

@name = name

@artist = artist

@duration = duration

end

end

initialize is a special method in Ruby programs. When you call Song.new to create
a new Song object, Ruby creates an uninitialized object and then calls that object’s
initialize method, passing in any parameters that were passed to new. This gives
you a chance to write code that sets up your object’s state.

For class Song, the initialize method takes three parameters. These parameters act
just like local variables within the method, so they follow the local variable naming
convention of starting with a lowercase letter.

1. As we mentioned on page 9, class names start with an uppercase letter, while method names start with
a lowercase letter.

17

18 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

Each object represents its own song, so we need each of our Song objects to carry
around its own song name, artist, and duration. This means we need to store these
values as instance variables within the object. In Ruby, an instance variable is simply a
name preceded by an “at” sign (“@”). In our example, the parameter name is assigned
to the instance variable @name, artist is assigned to @artist, and duration (the
length of the song in seconds) is assigned to @duration.

Let’s test our spiffy new class.

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.inspect → "#<Song:0x393840 @duration=260,

@artist=\"Fleck\", @name=\"Bicylops\">"

Well, it seems to work. By default, the inspect message, which can be sent to any
object, dumps out the object’s id and instance variables. It looks as though we have
them set up correctly.

Our experience tells us that during development we’ll be printing out the contents of
a Song object many times, and inspect’s default formatting leaves something to be
desired. Fortunately, Ruby has a standard message, to_s, which it sends to any object
it wants to render as a string. Let’s try it on our song.

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.to_s → "#<Song:0x393a5c>"

That wasn’t too useful—it just reported the object id. So, let’s override to_s in our
class. As we do this, we should also take a moment to talk about how we’re showing
the class definitions in this book.

In Ruby, classes are never closed: you can always add methods to an existing class.
This applies to the classes you write as well as the standard, built-in classes. All you
have to do is open up a class definition for an existing class, and the new contents you
specify will be added to whatever’s there.

This is great for our purposes. As we go through this chapter, adding features to our
classes, we’ll show just the class definitions for the new methods; the old ones will
still be there. It saves us having to repeat redundant stuff in each example. Obviously,
though, if you were creating this code from scratch, you’d probably just throw all the
methods into a single class definition.

Enough detail! Let’s get back to adding a to_s method to our Song class.

class Song

def to_s

"Song: #{@name}–#{@artist} (#{@duration})"

end

end

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.to_s → "Song: Bicylops–Fleck (260)"

Excellent, we’re making progress. However, we’ve slipped in something subtle. We
said that Ruby supports to_s for all objects, but we didn’t say how. The answer has to
do with inheritance, subclassing, and how Ruby determines what method to run when
you send a message to an object. This is a subject for a new section, so. . . .

INHERITANCE AND MESSAGES 19

Inheritance and Messages
Inheritance allows you to create a class that is a refinement or specialization of another
class. For example, our jukebox has the concept of songs, which we encapsulate in
class Song. Then marketing comes along and tells us that we need to provide karaoke
support. A karaoke song is just like any other (there’s no vocal on it, but that doesn’t
concern us). However, it also has an associated set of lyrics, along with timing informa-
tion. When our jukebox plays a karaoke song, the lyrics should flow across the screen
on the front of the jukebox in time with the music.

An approach to this problem is to define a new class, KaraokeSong, which is just like
Song, but with a lyric track.

class KaraokeSong < Song

def initialize(name, artist, duration, lyrics)

super(name, artist, duration)

@lyrics = lyrics

end

end

The “< Song” on the class definition line tells Ruby that a KaraokeSong is a sub-
class of Song. (Not surprisingly, this means that Song is a superclass of KaraokeSong.
People also talk about parent-child relationships, so KaraokeSong’s parent would be
Song.) For now, don’t worry too much about the initializemethod; we’ll talk about
that super call later.

Let’s create a KaraokeSong and check that our code worked. (In the final system, the
lyrics will be held in an object that includes the text and timing information. To test out
our class, though, we’ll just use a string. This is another benefit of untyped languages—
we don’t have to define everything before we start running code.

aSong = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")

aSong.to_s → "Song: My Way–Sinatra (225)"

Well, it ran, but why doesn’t the to_s method show the lyric?

The answer has to do with the way Ruby determines which method should be called
when you send a message to an object. When Ruby compiles the method invocation
aSong.to_s, it doesn’t actually know where to find the method to_s. Instead, it defers
the decision until the program is run. At that time, it looks at the class of aSong. If that
class implements a method with the same name as the message, that method is run.
Otherwise, Ruby looks for a method in the parent class, and then in the grandparent, and
so on up the ancestor chain. If it runs out of ancestors without finding the appropriate
method, it takes a special action that normally results in an error being raised.2

So, back to our example. We sent the message to_s to aSong, an object of class
KaraokeSong. Ruby looks in KaraokeSong for a method called to_s, but doesn’t
find it. The interpreter then looks in KaraokeSong’s parent, class Song, and there it

2. In fact, you can intercept this error, which allows you to fake out methods at runtime. This is described
under Object#method_missing on page 325.

20 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

finds the to_s method that we defined on page 18. That’s why it prints out the song
details but not the lyrics—class Song doesn’t know anything about lyrics.

Let’s fix this by implementing KaraokeSong#to_s. There are a number of ways to do
this. Let’s start with a bad way. We’ll copy the to_s method from Song and add on the
lyric.

class KaraokeSong

...

def to_s

"KS: #{@name}–#{@artist} (#{@duration}) [#{@lyrics}]"

end

end

aSong = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")

aSong.to_s → "KS: My Way–Sinatra (225) [And now, the...]"

We’re correctly displaying the value of the @lyrics instance variable. To do this, the
subclass directly accesses the instance variables of its ancestors. So why is this a bad
way to implement to_s?

The answer has to do with good programming style (and something called decoupling).
By poking around in our parent’s internal state, we’re tying ourselves tightly to its
implementation. Say we decided to change Song to store the duration in milliseconds.
Suddenly, KaraokeSongwould start reporting ridiculous values. The idea of a karaoke
version of “My Way” that lasts for 3750 minutes is just too frightening to consider.

We get around this problem by having each class handle its own internal state. When
KaraokeSong#to_s is called, we’ll have it call its parent’s to_s method to get the
song details. It will then append to this the lyric information and return the result. The
trick here is the Ruby keyword “super”. When you invoke super with no arguments,
Ruby sends a message to the current object’s parent, asking it to invoke a method of
the same name as the current method, and passing it the parameters that were passed to
the current method. Now we can implement our new and improved to_s.

class KaraokeSong < Song

Format ourselves as a string by appending

our lyrics to our parent’s #to_s value.

def to_s

super + " [#{@lyrics}]"

end

end

aSong = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")

aSong.to_s → "Song: My Way–Sinatra (225) [And now, the...]"

We explicitly told Ruby that KaraokeSong was a subclass of Song, but we didn’t
specify a parent class for Song itself. If you don’t specify a parent when defining a class,
Ruby supplies class Object as a default. This means that all objects have Object as
an ancestor, and that Object’s instance methods are available to every object in Ruby.
Back on page 18 we said that to_s is available to all objects. Now we know why; to_s
is one of more than 35 instance methods in class Object. The complete list begins on
page 321.

OBJECTS AND ATTRIBUTES 21

Inheritance and Mixins

Some object-oriented languages (notably C++) support multiple inheritance, where a
class can have more than one immediate parent, inheriting functionality from each.
Although powerful, this technique can be dangerous, as the inheritance hierarchy can
become ambiguous.

Other languages, such as Java, support single inheritance. Here, a class can have only
one immediate parent. Although cleaner (and easier to implement), single inheritance
also has drawbacks—in the real world things often inherit attributes from multiple
sources (a ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you the simplicity of sin-
gle inheritance and the power of multiple inheritance. A Ruby class can have only one
direct parent, and so Ruby is a single-inheritance language. However, Ruby classes can
include the functionality of any number of mixins (a mixin is like a partial class defini-
tion). This provides a controlled multiple-inheritance-like capability with none of the
drawbacks. We’ll explore mixins more beginning on page 92.

So far in this chapter we’ve been looking at classes and their methods. Now it’s time to
move on to the objects, such as the instances of class Song.

Objects and Attributes

The Song objects we’ve created so far have an internal state (such as the song title and
artist). That state is private to those objects—no other object can access an object’s
instance variables. In general, this is a Good Thing. It means that the object is solely
responsible for maintaining its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then
you can’t do anything with it. You’ll normally define methods that let you access and
manipulate the state of an object, allowing the outside world to interact with the object.
These externally visible facets of an object are called its attributes.

For our Song objects, the first thing we may need is the ability to find out the title and
artist (so we can display them while the song is playing) and the duration (so we can
display some kind of progress bar).

22 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

class Song

def name

@name

end

def artist

@artist

end

def duration

@duration

end

end

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.artist → "Fleck"

aSong.name → "Bicylops"

aSong.duration → 260

Here we’ve defined three accessor methods to return the values of the three instance
attributes. Because this is such a common idiom, Ruby provides a convenient shortcut:
attr_reader creates these accessor methods for you.

class Song

attr_reader :name, :artist, :duration

end

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.artist → "Fleck"

aSong.name → "Bicylops"

aSong.duration → 260

This example has introduced something new. The construct :artist is an expression
that returns a Symbol object corresponding to artist. You can think of :artist as
meaning the name of the variable artist, while plain artist is the value of the vari-
able. In this example, we named the accessor methods name, artist, and duration.
The corresponding instance variables, @name, @artist, and @duration, will be cre-
ated automatically. These accessor methods are identical to the ones we wrote by hand
earlier.

Writable Attributes
Sometimes you need to be able to set an attribute from outside the object. For example,
let’s assume that the duration that is initially associated with a song is an estimate
(perhaps gathered from information on a CD or in the MP3 data). The first time we
play the song, we get to find out how long it actually is, and we store this new value
back in the Song object.

In languages such as C++ and Java, you’d do this with setter functions.

class JavaSong { // Java code

private Duration myDuration;

public void setDuration(Duration newDuration) {

myDuration = newDuration;

}

}

s = new Song(....)

s.setDuration(length)

OBJECTS AND ATTRIBUTES 23

In Ruby, the attributes of an object can be accessed as if they were any other variable.
We’ve seen this above with phrases such as aSong.name. So, it seems natural to be able
to assign to these variables when you want to set the value of an attribute. In keeping
with the Principle of Least Surprise, that’s just what you do in Ruby.

class Song

def duration=(newDuration)

@duration = newDuration

end

end

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.duration → 260

aSong.duration = 257 # set attribute with updated value

aSong.duration → 257

The assignment “aSong.duration = 257” invokes the method duration= in the
aSong object, passing it 257 as an argument. In fact, defining a method name end-
ing in an equals sign makes that name eligible to appear on the left-hand side of an
assignment.

Again, Ruby provides a shortcut for creating these simple attribute setting methods.

class Song

attr_writer :duration

end

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.duration = 257

Virtual Attributes
These attribute accessing methods do not have to be just simple wrappers around an
object’s instance variables. For example, you might want to access the duration in min-
utes and fractions of a minute, rather than in seconds as we’ve been doing.

class Song

def durationInMinutes

@duration/60.0 # force floating point

end

def durationInMinutes=(value)

@duration = (value*60).to_i

end

end

aSong = Song.new("Bicylops", "Fleck", 260)

aSong.durationInMinutes → 4.333333333333333

aSong.durationInMinutes = 4.2

aSong.duration → 252

Here we’ve used attribute methods to create a virtual instance variable. To the outside
world, durationInMinutes seems to be an attribute like any other. Internally, though,
there is no corresponding instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Con-
struction [Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding
the difference between instance variables and calculated values, you are shielding the
rest of the world from the implementation of your class. You’re free to change how

24 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

things work in the future without impacting the millions of lines of code that use your
class. This is a big win.

Class Variables and Class Methods
So far, all the classes we’ve created have contained instance variables and instance
methods: variables that are associated with a particular instance of the class, and meth-
ods that work on those variables. Sometimes classes themselves need to have their own
states. This is where class variables come in.

Class Variables

A class variable is shared among all objects of a class, and it is also accessible to the
class methods that we’ll describe later. There is only one copy of a particular class
variable for a given class. Class variable names start with two “at” signs, such as
“@@count”. Unlike global and instance variables, class variables must be initialized
before they are used. Often this initialization is just a simple assignment in the body of
the class definition.

For example, our jukebox may want to record how many times each particular song
has been played. This count would probably be an instance variable of the Song object.
When a song is played, the value in the instance is incremented. But say we also want
to know how many songs have been played in total. We could do this by searching
for all the Song objects and adding up their counts, or we could risk excommunication
from the Church of Good Design and use a global variable. Instead, we’ll use a class
variable.

class Song

@@plays = 0

def initialize(name, artist, duration)

@name = name

@artist = artist

@duration = duration

@plays = 0

end

def play

@plays += 1

@@plays += 1

"This song: #@plays plays. Total #@@plays plays."

end

end

For debugging purposes, we’ve arranged for Song#play to return a string containing
the number of times this song has been played, along with the total number of plays for
all songs. We can test this easily.

CLASS VARIABLES AND CLASS METHODS 25

s1 = Song.new("Song1", "Artist1", 234) # test songs..

s2 = Song.new("Song2", "Artist2", 345)

s1.play → "This song: 1 plays. Total 1 plays."

s2.play → "This song: 1 plays. Total 2 plays."

s1.play → "This song: 2 plays. Total 3 plays."

s1.play → "This song: 3 plays. Total 4 plays."

Class variables are private to a class and its instances. If you want to make them acces-
sible to the outside world, you’ll need to write an accessor method. This method could
be either an instance method or, leading us neatly to the next section, a class method.

Class Methods
Sometimes a class needs to provide methods that work without being tied to any par-
ticular object. We’ve already come across one such method. The new method creates a
new Song object but is not itself associated with a particular song.

aSong = Song.new(....)

You’ll find class methods sprinkled throughout the Ruby libraries. For example, objects
of class File represent open files in the underlying file system. However, class File
also provides several class methods for manipulating files that aren’t open and there-
fore don’t have a File object. If you want to delete a file, you call the class method
File.delete, passing in the name.

File.delete("doomedFile")

Class methods are distinguished from instance methods by their definition. Class meth-
ods are defined by placing the class name and a period in front of the method name.

class Example

def instMeth # instance method

end

def Example.classMeth # class method

end

end

Jukeboxes charge money for each song played, not by the minute. That makes short
songs more profitable than long ones. We may want to prevent songs that take too long
from being available on the SongList. We could define a class method in SongList

that checked to see if a particular song exceeded the limit. We’ll set this limit using
a class constant, which is simply a constant (remember constants? they start with an
uppercase letter) that is initialized in the class body.

class SongList

MaxTime = 5*60 # 5 minutes

def SongList.isTooLong(aSong)

return aSong.duration > MaxTime

end

end

song1 = Song.new("Bicylops", "Fleck", 260)

SongList.isTooLong(song1) → false

song2 = Song.new("The Calling", "Santana", 468)

SongList.isTooLong(song2) → true

26 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

Singletons and Other Constructors
Sometimes you want to override the default way in which Ruby creates objects. As an
example, let’s look at our jukebox. Because we’ll have many jukeboxes, spread all over
the country, we want to make maintenance as easy as possible. Part of the requirement
is to log everything that happens to a jukebox: the songs that are played, the money
received, the strange fluids poured into it, and so on. Because we want to reserve the
network bandwidth for music, we’ll store these logfiles locally. This means we’ll need
a class that handles logging. However, we want only one logging object per jukebox,
and we want that object to be shared among all the other objects that use it.

Enter the Singleton pattern, documented in Design Patterns [GHJV95]. We’ll arrange
things so that the only way to create a logging object is to call Logger.create, and
we’ll ensure that only one logging object is ever created.

class Logger

private_class_method :new

@@logger = nil

def Logger.create

@@logger = new unless @@logger

@@logger

end

end

By making Logger’s method new private, we prevent anyone from creating a log-
ging object using the conventional constructor. Instead, we provide a class method,
Logger.create. This uses the class variable @@logger to keep a reference to a single
instance of the logger, returning that instance every time it is called.3 We can check this
by looking at the object identifiers the method returns.

Logger.create.id → 1878056

Logger.create.id → 1878056

Using class methods as pseudo-constructors can also make life easier for users of your
class. As a trivial example, let’s look at a class Shape that represents a regular polygon.
Instances of Shape are created by giving the constructor the required number of sides
and the total perimeter.

class Shape

def initialize(numSides, perimeter)

...

end

end

However, a couple of years later, this class is used in a different application, where the
programmers are used to creating shapes by name, and by specifying the length of the
side, not the perimeter. Simply add some class methods to Shape.

class Shape

def Shape.triangle(sideLength)

3. The implementation of singletons that we present here is not thread-safe; if multiple threads were
running, it would be possible to create multiple logger objects. Rather than add thread safety ourselves,
however, we’d probably use the Singleton mixin supplied with Ruby, which is documented on page 426.

ACCESS CONTROL 27

Shape.new(3, sideLength*3)

end

def Shape.square(sideLength)

Shape.new(4, sideLength*4)

end

end

There are many interesting and powerful uses of class methods, but exploring them
won’t get our jukebox finished any sooner, so let’s move on.

Access Control
When designing a class interface, it’s important to consider just how much access to
your class you’ll be exposing to the outside world. Allow too much access into your
class, and you risk increasing the coupling in your application—users of your class will
be tempted to rely on details of your class’s implementation, rather than on its logical
interface. The good news is that the only way to change an object’s state in Ruby is by
calling one of its methods. Control access to the methods and you’ve controlled access
to the object. A good rule of thumb is never to expose methods that could leave an
object in an invalid state. Ruby gives us three levels of protection.

• Public methods can be called by anyone—there is no access control. Methods are
public by default (except for initialize, which is always private).

• Protected methods can be invoked only by objects of the defining class and its
subclasses. Access is kept within the family.

• Private methods cannot be called with an explicit receiver. Because you cannot
specify an object when using them, private methods can be called only in the
defining class and by direct descendents within that same object.

The difference between “protected” and “private” is fairly subtle, and is different in
Ruby than in most common OO languages. If a method is protected, it may be called
by any instance of the defining class or its subclasses. If a method is private, it may
be called only within the context of the calling object—it is never possible to access
another object’s private methods directly, even if the object is of the same class as the
caller.

Ruby differs from other OO languages in another important way. Access control is
determined dynamically, as the program runs, not statically. You will get an access
violation only when the code attempts to execute the restricted method.

Specifying Access Control

You specify access levels to methods within class or module definitions using one or
more of the three functions public, protected, and private. Each function can be
used in two different ways.

28 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

If used with no arguments, the three functions set the default access control of subse-
quently defined methods. This is probably familiar behavior if you’re a C++ or Java
programmer, where you’d use keywords such as public to achieve the same effect.

class MyClass

def method1 # default is ’public’

#...

end

protected # subsequent methods will be ’protected’

def method2 # will be ’protected’

#...

end

private # subsequent methods will be ’private’

def method3 # will be ’private’

#...

end

public # subsequent methods will be ’public’

def method4 # and this will be ’public’

#...

end

end

Alternatively, you can set access levels of named methods by listing them as arguments
to the access control functions.

class MyClass

def method1

end

... and so on

public :method1, :method4

protected :method2

private :method3

end

A class’s initializemethod is automatically declared to be private.

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this
rule, we’ll make the methods that do the debits and credits private, and we’ll define our
external interface in terms of transactions.

class Accounts

private

def debit(account, amount)

account.balance -= amount

end

def credit(account, amount)

account.balance += amount

end

public

#...

def transferToSavings(amount)

debit(@checking, amount)

credit(@savings, amount)

VARIABLES 29

end

#...

end

Protected access is used when objects need to access the internal state of other objects
of the same class. For example, we may want to allow the individual Account objects
to compare their raw balances, but may want to hide those balances from the rest of the
world (perhaps because we present them in a different form).

class Account

attr_reader :balance # accessor method ’balance’

protected :balance # and make it protected

def greaterBalanceThan(other)

return @balance > other.balance

end

end

Because the attribute balance is protected, it’s available only within Account objects.

Variables
Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t
lose them. Variables are used to keep track of objects; each variable holds a reference
to an object.

Let’s confirm this with some code.
person = "Tim"

person.id → 1878366

person.class → String

person → "Tim"

On the first line, Ruby creates a new String object with the value “Tim.” A reference
to this object is placed in the local variable person. A quick check shows that the
variable has indeed taken on the personality of a string, with an object id, a class type,
and a value.

So, is a variable an object?

In Ruby, the answer is “no.” A variable is simply a reference to an object. Objects float
around in a big pool somewhere (the heap, most of the time) and are pointed to by
variables.

Let’s make the example slightly more complicated.

person1 = "Tim"

person2 = person1

person1[0] = ’J’

person1 → "Jim"

person2 → "Jim"

What happened here? We changed the first character of person1, but both person1

and person2 changed from “Tim” to “Jim.”

30 CHAPTER 3. CLASSES, OBJECTS, AND VARIABLES

Figure 3.1. Variables hold object references

person1 = "Tim"

person1

Tim

String

...

person2 = person1

person1

person2
Tim

String

...

person1[0] = "J"

person1

person2
Jim

String

It all comes back to the fact that variables hold references to objects, not the objects
themselves. The assignment of person1 to person2 doesn’t create any new objects;
it simply copies person1’s object reference to person2, so that both person1 and
person2 refer to the same object. We show this in Figure 3.1.

Assignment aliases objects, potentially giving you multiple variables that reference the
same object. But can’t this cause problems in your code? It can, but not as often as
you’d think (objects in Java, for example, work exactly the same way). For instance,
in the example in Figure 3.1, you could avoid aliasing by using the dup method of
String, which creates a new String object with identical contents.

person1 = "Tim"

person2 = person1.dup

person1[0] = "J"

person1 → "Jim"

person2 → "Tim"

You can also prevent anyone from changing a particular object by freezing it (we talk
more about freezing objects on page 229). Attempt to alter a frozen object, and Ruby
will raise a TypeError exception.

person1 = "Tim"

person2 = person1

person1.freeze # prevent modifications to the object

person2[0] = "J"

produces:
prog.rb:4:in `[]=’: can’t modify frozen string (TypeError)

from prog.rb:4

Chapter 4

Containers, Blocks,
and Iterators

A jukebox with one song is unlikely to be popular (except perhaps in some very, very
scary bars), so pretty soon we’ll have to start thinking about producing a catalog of
available songs and a playlist of songs waiting to be played. Both of these are contain-
ers: objects that hold references to one or more other objects.

Both the catalog and the playlist need a similar set of methods: add a song, remove
a song, return a list of songs, and so on. The playlist may perform additional tasks,
such as inserting advertising every so often or keeping track of cumulative play time,
but we’ll worry about these things later. In the meantime, it seems like a good idea to
develop some kind of generic SongList class, which we can specialize into catalogs
and playlists.

Containers

Before we start implementing, we’ll need to work out how to store the list of songs
inside a SongList object. We have three obvious choices. We could use the Ruby
Array type, use the Ruby Hash type, or create our own list structure. Being lazy, for
now we’ll look at arrays and hashes, and choose one of these for our class.

Arrays

The class Array holds a collection of object references. Each object reference occupies
a position in the array, identified by a non-negative integer index.

You can create arrays using literals or by explicitly creating an Array object. A literal
array is simply a list of objects between square brackets.

31

32 CHAPTER 4. CONTAINERS, BLOCKS, AND ITERATORS

a = [3.14159, "pie", 99]

a.class → Array

a.length → 3

a[0] → 3.14159

a[1] → "pie"

a[2] → 99

a[3] → nil

b = Array.new

b.class → Array

b.length → 0

b[0] = "second"

b[1] = "array"

b → ["second", "array"]

Arrays are indexed using the [] operator. As with most Ruby operators, this is actually
a method (in class Array) and hence can be overridden in subclasses. As the example
shows, array indices start at zero. Index an array with a single integer, and it returns the
object at that position or returns nil if nothing’s there. Index an array with a negative
integer, and it counts from the end. This is shown in Figure 4.1 on the next page.

a = [1, 3, 5, 7, 9]

a[-1] → 9

a[-2] → 7

a[-99] → nil

You can also index arrays with a pair of numbers, [start, count]. This returns a
new array consisting of references to count objects starting at position start.

a = [1, 3, 5, 7, 9]

a[1, 3] → [3, 5, 7]

a[3, 1] → [7]

a[-3, 2] → [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are sepa-
rated by two or three periods. The two-period form includes the end position, while the
three-period form does not.

a = [1, 3, 5, 7, 9]

a[1..3] → [3, 5, 7]

a[1...3] → [3, 5]

a[3..3] → [7]

a[-3..-1] → [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the
array. If used with a single integer index, the element at that position is replaced by
whatever is on the right-hand side of the assignment. Any gaps that result will be filled
with nil.

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[1] = ’bat’ → [1, "bat", 5, 7, 9]

a[-3] = ’cat’ → [1, "bat", "cat", 7, 9]

a[3] = [9, 8] → [1, "bat", "cat", [9, 8], 9]

a[6] = 99 → [1, "bat", "cat", [9, 8], 9, nil, 99]

If the index to []= is two numbers (a start and a length) or a range, then those ele-
ments in the original array are replaced by whatever is on the right-hand side of the
assignment. If the length is zero, the right-hand side is inserted into the array before

CONTAINERS 33

Figure 4.1. How arrays are indexed

Positive→ 0 1 2 3 4 5 6 Negative
indices −7 −6 −5 −4 −3 −2 −1 ← indices

a = “ant” “bat” “cat” “dog” “elk” “fly” “gnu”

a[2]→ “cat”

a[-3]→ “elk”

a[1..3]→ “bat” “cat” “dog”

a[-3..-1]→ “elk” “fly” “gnu”

a[4..-2]→ “elk” “fly”

the start position; no elements are removed. If the right-hand side is itself an array, its
elements are used in the replacement. The array size is automatically adjusted if the
index selects a different number of elements than are available on the right-hand side
of the assignment.

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[2, 2] = ’cat’ → [1, 3, "cat", 9]

a[2, 0] = ’dog’ → [1, 3, "dog", "cat", 9]

a[1, 1] = [9, 8, 7] → [1, 9, 8, 7, "dog", "cat", 9]

a[0..3] = [] → ["dog", "cat", 9]

a[5] = 99 → ["dog", "cat", 9, nil, nil, 99]

Arrays have a large number of other useful methods. Using these, you can treat arrays
as stacks, sets, queues, dequeues, and fifos. A complete list of array methods starts on
page 254.

Hashes
Hashes (sometimes known as associative arrays or dictionaries) are similar to arrays,
in that they are indexed collectives of object references. However, while you index
arrays with integers, you can index a hash with objects of any type: strings, regular
expressions, and so on. When you store a value in a hash, you actually supply two
objects—the key and the value. You can subsequently retrieve the value by indexing
the hash with the same key. The values in a hash can be any objects of any type. The
example that follows uses hash literals: a list of key => value pairs between braces.

h = { ’dog’ => ’canine’, ’cat’ => ’feline’, ’donkey’ => ’asinine’ }

h.length → 3

h[’dog’] → "canine"

h[’cow’] = ’bovine’

h[12] = ’dodecine’

h[’cat’] = 99

h → {"cow"=>"bovine", "cat"=>99, 12=>"dodecine",

"donkey"=>"asinine", "dog"=>"canine"}

34 CHAPTER 4. CONTAINERS, BLOCKS, AND ITERATORS

Compared with arrays, hashes have one significant advantage: they can use any object
as an index. However, they also have a significant disadvantage: their elements are not
ordered, so you cannot easily use a hash as a stack or a queue.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A
full list of the methods implemented by class Hash starts on page 289.

Implementing a SongList Container
After that little diversion into arrays and hashes, we’re now ready to implement the
jukebox’s SongList. Let’s invent a basic list of methods we need in our SongList.
We’ll want to add to it as we go along, but it will do for now.

append(aSong)→ list

Append the given song to the list.

deleteFirst()→ aSong

Remove the first song from the list, returning that song.

deleteLast()→ aSong

Remove the last song from the list, returning that song.

[anIndex]→ aSong

Return the song identified by anIndex, which may be an integer index or a song
title.

This list gives us a clue to the implementation. The ability to append songs at the end,
and remove them from both the front and end, suggests a dequeue—a double-ended
queue—which we know we can implement using an Array. Similarly, the ability to
return a song at an integer position in the list is supported by arrays.

However, there’s also the need to be able to retrieve songs by title, which might suggest
using a hash, with the title as a key and the song as a value. Could we use a hash? Well,
possibly, but there are problems. First a hash is unordered, so we’d probably need to
use an ancillary array to keep track of the list. A bigger problem is that a hash does not
support multiple keys with the same value. That would be a problem for our playlist,
where the same song might be queued up for playing multiple times. So, for now we’ll
stick with an array of songs, searching it for titles when needed. If this becomes a
performance bottleneck, we can always add some kind of hash-based lookup later.

We’ll start our class with a basic initialize method, which creates the Array we’ll
use to hold the songs and stores a reference to it in the instance variable @songs.

class SongList

def initialize

@songs = Array.new

end

end

The SongList#appendmethod adds the given song to the end of the @songs array. It
also returns self, a reference to the current SongList object. This is a useful convention,
as it lets us chain together multiple calls to append. We’ll see an example of this later.

class SongList

def append(aSong)

CONTAINERS 35

@songs.push(aSong)

self

end

end

Then we’ll add the deleteFirst and deleteLast methods, trivially implemented
using Array#shift and Array#pop, respectively.

class SongList

def deleteFirst

@songs.shift

end

def deleteLast

@songs.pop

end

end

At this point, a quick test might be in order. First, we’ll append four songs to the list.
Just to show off, we’ll use the fact that append returns the SongList object to chain
together these method calls.

list = SongList.new

list.

append(Song.new(’title1’, ’artist1’, 1)).

append(Song.new(’title2’, ’artist2’, 2)).

append(Song.new(’title3’, ’artist3’, 3)).

append(Song.new(’title4’, ’artist4’, 4))

Then we’ll check that songs are taken from the start and end of the list correctly, and
that nil is returned when the list becomes empty.

list.deleteFirst → Song: title1–artist1 (1)

list.deleteFirst → Song: title2–artist2 (2)

list.deleteLast → Song: title4–artist4 (4)

list.deleteLast → Song: title3–artist3 (3)

list.deleteLast → nil

So far so good. Our next method is [], which accesses elements by index. If the index
is a number (which we check using Object#kind_of?), we just return the element at
that position.

class SongList

def [](key)

if key.kind_of?(Integer)

@songs[key]

else

...

end

end

end

Again, testing this is pretty trivial.

list[0] → Song: title1–artist1 (1)

list[2] → Song: title3–artist3 (3)

list[9] → nil

36 CHAPTER 4. CONTAINERS, BLOCKS, AND ITERATORS

Now we need to add the facility that lets us look up a song by title. This is going to
involve scanning through the songs in the list, checking the title of each. To do this, we
first need to spend a couple of pages looking at one of Ruby’s neatest features: iterators.

Blocks and Iterators
So, our next problem with SongList is to implement the code in method [] that takes
a string and searches for a song with that title. This seems straightforward: we have an
array of songs, so we just go through it one element at a time, looking for a match.

class SongList

def [](key)

if key.kind_of?(Integer)

return @songs[key]

else

for i in 0...@songs.length

return @songs[i] if key == @songs[i].name

end

end

return nil

end

end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What
could be more natural?

It turns out there is something more natural. In a way, our for loop is somewhat too
intimate with the array; it asks for a length, then retrieves values in turn until it finds
a match. Why not just ask the array to apply a test to each of its members? That’s just
what the find method in Array does.

class SongList

def [](key)

if key.kind_of?(Integer)

result = @songs[key]

else

result = @songs.find { |aSong| key == aSong.name }

end

return result

end

end

We could use if as a statement modifier to shorten the code even more.

class SongList

def [](key)

return @songs[key] if key.kind_of?(Integer)

return @songs.find { |aSong| aSong.name == key }

end

end

The method find is an iterator—a method that invokes a block of code repeatedly.
Iterators and code blocks are among the more interesting features of Ruby, so let’s
spend a while looking into them (and in the process we’ll find out exactly what that
line of code in our [] method actually does).

BLOCKS AND ITERATORS 37

Implementing Iterators
A Ruby iterator is simply a method that can invoke a block of code. At first sight, a
block in Ruby looks just like a block in C, Java, or Perl. Unfortunately, in this case
looks are deceiving—a Ruby block is a way of grouping statements, but not in the
conventional way.

First, a block may appear only in the source adjacent to a method call; the block is
written starting on the same line as the method’s last parameter. Second, the code in
the block is not executed at the time it is encountered. Instead, Ruby remembers the
context in which the block appears (the local variables, the current object, and so on),
and then enters the method. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using
the yield statement. Whenever a yield is executed, it invokes the code in the block.
When the block exits, control picks back up immediately after the yield.1 Let’s start
with a trivial example.

def threeTimes

yield

yield

yield

end

threeTimes { puts "Hello" }

produces:

Hello

Hello

Hello

The block (the code between the braces) is associated with the call to the method
threeTimes. Within this method, yield is called three times in a row. Each time,
it invokes the code in the block, and a cheery greeting is printed. What makes blocks
interesting, however, is that you can pass parameters to them and receive values back
from them. For example, we could write a simple function that returns members of the
Fibonacci series up to a certain value.2

def fibUpTo(max)

i1, i2 = 1, 1 # parallel assignment

while i1 <= max

yield i1

i1, i2 = i2, i1+i2

end

end

fibUpTo(1000) { |f| print f, " " }

produces:

1. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the
yield function in Liskov’s language CLU, a language that is over 20 years old and yet contains features that
still haven’t been widely exploited by the CLU-less.

2. The basic Fibonacci series is a sequence of integers, starting with two 1’s, in which each subsequent
term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in
analyzing natural phenomena.

38 CHAPTER 4. CONTAINERS, BLOCKS, AND ITERATORS

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

In this example, the yield statement has a parameter. This value is passed to the asso-
ciated block. In the definition of the block, the argument list appears between vertical
bars. In this instance, the variable f receives the value passed to the yield, so the block
prints successive members of the series. (This example also shows parallel assignment
in action. We’ll come back to this on page 70.) Although it is common to pass just
one value to a block, this is not a requirement; a block may have any number of argu-
ments. What happens if a block has a different number of parameters than are given
to the yield? By a staggering coincidence, the rules we discuss under parallel assign-
ment come into play (with a slight twist: multiple parameters passed to a yield are
converted to an array if the block has just one argument).

Parameters to a block may be existing local variables; if so, the new value of the variable
will be retained after the block completes. This may lead to unexpected behavior, but
there is also a performance gain to be had by using variables that already exist.3

A block may also return a value to the method. The value of the last expression evalu-
ated in the block is passed back to the method as the value of the yield. This is how the
find method used by class Array works.4 Its implementation would look something
like the following.

class Array

def find

for i in 0...size

value = self[i]

return value if yield(value)

end

return nil

end

end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } → 7

This passes successive elements of the array to the associated block. If the block
returns true, the method returns the corresponding element. If no element matches,
the method returns nil. The example shows the benefit of this approach to iterators.
The Array class does what it does best, accessing array elements, leaving the applica-
tion code to concentrate on its particular requirement (in this case, finding an entry that
meets some mathematical criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find
already. Two others are each and collect. each is probably the simplest iterator—all
it does is yield successive elements of its collection.

[1, 3, 5].each { |i| puts i }

produces:

3. For more information on this and other “gotchas,” see the list beginning on page 117; more perfor-
mance information begins on page 119.

4. The find method is actually defined in module Enumerable, which is mixed into class Array.

BLOCKS AND ITERATORS 39

1

3

5

The each iterator has a special place in Ruby; on page 79 we’ll describe how it’s used
as the basis of the language’s for loop, and starting on page 96 we’ll see how defining
an each method can add a whole lot more functionality to your class for free.

Another common iterator is collect, which takes each element from the collection
and passes it to the block. The results returned by the block are used to construct a new
array. For instance:

["H", "A", "L"].collect { |x| x.succ } → ["I", "B", "M"]

Ruby Compared with C++ and Java
It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of C++
and Java. In the Ruby approach, the iterator is simply a method, identical to any other,
that happens to call yield whenever it generates a new value. The thing that uses the
iterator is simply a block of code associated with this method. There is no need to
generate helper classes to carry the iterator state, as in Java and C++. In this, as in
many other ways, Ruby is a transparent language. When you write a Ruby program,
you concentrate on getting the job done, not on building scaffolding to support the
language itself.

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the
Fibonacci example, an iterator can return derived values. This capability is used by the
Ruby input/output classes, which implement an iterator interface returning successive
lines (or bytes) in an I/O stream.

f = File.open("testfile")

f.each do |line|

print line

end

f.close

produces:
This is line one

This is line two

This is line three

And so on...

Let’s look at just one more iterator implementation. The Smalltalk language also sup-
ports iterators over collections. If you ask Smalltalk programmers to sum the elements
in an array, it’s likely that they’d use the inject function.

sumOfValues "Smalltalk method"

^self values

inject: 0

into: [:sum :element | sum + element value]

inject works like this. The first time the associated block is called, sum is set to
inject’s parameter (zero in this case), and element is set to the first element in the

40 CHAPTER 4. CONTAINERS, BLOCKS, AND ITERATORS

array. The second and subsequent times the block is called, sum is set to the value
returned by the block on the previous call. This way, sum can be used to keep a running
total. The final value of inject is the value returned by the block the last time it was
called.

Ruby does not have an inject method, but it’s easy to write one. In this case we’ll
add it to the Array class, while on page 94 we’ll see how to make it more generally
available.

class Array

def inject(n)

each { |value| n = yield(n, value) }

n

end

def sum

inject(0) { |n, value| n + value }

end

def product

inject(1) { |n, value| n * value }

end

end

[1, 2, 3, 4, 5].sum → 15

[1, 2, 3, 4, 5].product → 120

Although blocks are often the target of an iterator, they also have other uses. Let’s look
at a few.

Blocks for Transactions
Blocks can be used to define a chunk of code that must be run under some kind of
transactional control. For example, you’ll often open a file, do something with its con-
tents, and then want to ensure that the file is closed when you finish. Although you can
do this using conventional code, there’s an argument for making the file responsible
for closing itself. We can do this with blocks. A naive implementation (ignoring error
handling) might look something like the following.

class File

def File.openAndProcess(*args)

f = File.open(*args)

yield f

f.close()

end

end

File.openAndProcess("testfile", "r") do |aFile|

print while aFile.gets

end

produces:
This is line one

This is line two

This is line three

And so on...

This small example illustrates a number of techniques. The openAndProcessmethod
is a class method—it may be called independent of any particular File object. We

BLOCKS AND ITERATORS 41

want it to take the same arguments as the conventional File.open method, but we
don’t really care what those arguments are. Instead, we specified the arguments as
*args, meaning “collect the actual parameters passed to the method into an array.”
We then call File.open, passing it *args as a parameter. This expands the array back
into individual parameters. The net result is that openAndProcess transparently passes
whatever parameters it received to File.open.

Once the file has been opened, openAndProcess calls yield, passing the open file
object to the block. When the block returns, the file is closed. In this way, the responsi-
bility for closing an open file has been passed from the user of file objects back to the
files themselves.

Finally, this example uses do. . .end to define a block. The only difference between this
notation and using braces to define blocks is precedence: do. . .end binds lower than
“{. . . }”. We discuss the impact of this on page 213.

The technique of having files manage their own lifecycle is so useful that the class
File supplied with Ruby supports it directly. If File.open has an associated block,
then that block will be invoked with a file object, and the file will be closed when
the block terminates. This is interesting, as it means that File.open has two different
behaviors: when called with a block, it executes the block and closes the file. When
called without a block, it returns the file object. This is made possible by the method
Kernel.block_given?, which returns true if a block is associated with the current
method. Using it, you could implement File.open (again, ignoring error handling)
using something like the following.

class File

def File.myOpen(*args)

aFile = File.new(*args)

If there’s a block, pass in the file and close

the file when it returns

if block_given?

yield aFile

aFile.close

aFile = nil

end

return aFile

end

end

Blocks Can Be Closures
Let’s get back to our jukebox for a moment (remember the jukebox?). At some point
we’ll be working on the code that handles the user interface—the buttons that people
press to select songs and control the jukebox. We’ll need to associate actions with
those buttons: press STOP and the music stops. It turns out that Ruby’s blocks are a
convenient way to do this. Let’s start out by assuming that the people who made the
hardware implemented a Ruby extension that gives us a basic button class. (We talk
about extending Ruby beginning on page 153.)

bStart = Button.new("Start")

bPause = Button.new("Pause")

42 CHAPTER 4. CONTAINERS, BLOCKS, AND ITERATORS

...

What happens when the user presses one of our buttons? In the Button class, the hard-
ware folks rigged things so that a callback method, buttonPressed, will be invoked.
The obvious way of adding functionality to these buttons is to create subclasses of
Button and have each subclass implement its own buttonPressedmethod.

class StartButton < Button

def initialize

super("Start") # invoke Button’s initialize

end

def buttonPressed

do start actions...

end

end

bStart = StartButton.new

There are two problems here. First, this will lead to a large number of subclasses. If the
interface to Button changes, this could involve us in a lot of maintenance. Second, the
actions performed when a button is pressed are expressed at the wrong level; they are
not a feature of the button, but are a feature of the jukebox that uses the buttons. We
can fix both of these problems using blocks.

class JukeboxButton < Button

def initialize(label, &action)

super(label)

@action = action

end

def buttonPressed

@action.call(self)

end

end

bStart = JukeboxButton.new("Start") { songList.start }

bPause = JukeboxButton.new("Pause") { songList.pause }

The key to all this is the second parameter to JukeboxButton#initialize. If the
last parameter in a method definition is prefixed with an ampersand (such as &action),
Ruby looks for a code block whenever that method is called. That code block is con-
verted to an object of class Proc and assigned to the parameter. You can then treat
the parameter as any other variable. In our example, we assigned it to the instance
variable @action. When the callback method buttonPressed is invoked, we use the
Proc#call method on that object to invoke the block.

So what exactly do we have when we create a Proc object? The interesting thing is that
it’s more than just a chunk of code. Associated with a block (and hence a Proc object)
is all the context in which the block was defined: the value of self, and the methods,
variables, and constants in scope. Part of the magic of Ruby is that the block can still
use all this original scope information even if the environment in which it was defined
would otherwise have disappeared. In other languages, this facility is called a closure.

Let’s look at a contrived example. This example uses the method proc, which converts
a block to a Proc object.

BLOCKS AND ITERATORS 43

def nTimes(aThing)

return proc { |n| aThing * n }

end

p1 = nTimes(23)

p1.call(3) → 69

p1.call(4) → 92

p2 = nTimes("Hello ")

p2.call(3) → "Hello Hello Hello "

The method nTimes returns a Proc object that references the method’s parameter,
aThing. Even though that parameter is out of scope by the time the block is called, the
parameter remains accessible to the block.

Chapter 5

Standard Types

So far we’ve been having fun implementing pieces of our jukebox code, but we’ve been
negligent. We’ve looked at arrays, hashes, and procs, but we haven’t really covered
the other basic types in Ruby: numbers, strings, ranges, and regular expressions. Let’s
spend a few pages on these basic building blocks now.

Numbers
Ruby supports integers and floating point numbers. Integers can be any length (up to a
maximum determined by the amount of free memory on your system). Integers within a
certain range (normally−230 to 230−1 or−262 to 262−1) are held internally in binary
form, and are objects of class Fixnum. Integers outside this range are stored in objects
of class Bignum (currently implemented as a variable-length set of short integers). This
process is transparent, and Ruby automatically manages the conversion back and forth.

num = 8

7.times do

print num.class, " ", num, "\n"

num *= num

end

produces:
Fixnum 8

Fixnum 64

Fixnum 4096

Fixnum 16777216

Bignum 281474976710656

Bignum 79228162514264337593543950336

Bignum 6277101735386680763835789423207666416102355444464034512896

You write integers using an optional leading sign, an optional base indicator (0 for
octal, 0x for hex, or 0b for binary), followed by a string of digits in the appropriate
base. Underscore characters are ignored in the digit string.

123456 # Fixnum

123_456 # Fixnum (underscore ignored)

-543 # Negative Fixnum

123_456_789_123_345_789 # Bignum

0xaabb # Hexadecimal

45

46 CHAPTER 5. STANDARD TYPES

0377 # Octal

-0b101_010 # Binary (negated)

You can also get the integer value corresponding to an ASCII character or escape
sequence by preceding it with a question mark. Control and meta combinations can
also be generated using ?\C-x, ?\M-x, and ?\M-\C-x. The control version of a value
is the same as “value & 0x9f”. The meta version of a value is “value | 0x80”.
Finally, the sequence ?\C-? generates an ASCII delete, 0177.

?a # character code

?\n # code for a newline (0x0a)

?\C-a # control a = ?A & 0x9f = 0x01

?\M-a # meta sets bit 7

?\M-\C-a # meta and control a

?\C-? # delete character

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must follow the deci-
mal point with a digit, as 1.e3 tries to invoke the method e3 in class Fixnum.

All numbers are objects, and respond to a variety of messages (listed in full starting on
pages 265, 286, 287, 295, and 319). So, unlike (say) C++, you find the absolute value
of a number by writing aNumber.abs, not abs(aNumber).

Integers also support several useful iterators. We’ve seen one already—7.times in the
code example on the preceding page. Others include upto and downto, for iterating up
and down between two integers, and step, which is more like a traditional for loop.

3.times { print "X " }

1.upto(5) { |i| print i, " " }

99.downto(95) { |i| print i, " " }

50.step(80, 5) { |i| print i, " " }

produces:
X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

Finally, a warning for Perl users. Strings that contain numbers are not automatically
converted into numbers when used in expressions. This tends to bite most often when
reading numbers from a file. The following code (probably) doesn’t do what was
intended.

DATA.each do |line|

vals = line.split # split line, storing tokens in val

print vals[0] + vals[1], " "

end

Feed it a file containing

3 4

5 6

7 8

and you’ll get the output “34 56 78.” What happened?

The problem is that the input was read as strings, not numbers. The plus operator con-
catenates strings, so that’s what we see in the output. To fix this, use the String#to_i
method to convert the string to an integer.

STRINGS 47

DATA.each do |line|

vals = line.split

print vals[0].to_i + vals[1].to_i, " "

end

produces:
7 11 15

Strings
Ruby strings are simply sequences of 8-bit bytes. They normally hold printable charac-
ters, but that is not a requirement; a string can also hold binary data. Strings are objects
of class String.

Strings are often created using string literals—sequences of characters between delim-
iters. Because binary data is otherwise difficult to represent within program source,
you can place various escape sequences in a string literal. Each is replaced with the
corresponding binary value as the program is compiled. The type of string delimiter
determines the degree of substitution performed. Within single-quoted strings, two con-
secutive backslashes are replaced by a single backslash, and a backslash followed by a
single quote becomes a single quote.

’escape using "\\"’ → escape using "\"

’That\’s right’ → That’s right

Double-quoted strings support a boatload more escape sequences. The most common
is probably “\n”, the newline character. Table 18.2 on page 185 gives the complete list.
In addition, you can substitute the value of any Ruby expression into a string using the
sequence #{ expr }. If the expression is just a global variable, a class variable, or an
instance variable, you can omit the braces.

"Seconds/day: #{24*60*60}" → Seconds/day: 86400

"#{’Ho! ’*3}Merry Christmas" → Ho! Ho! Ho! Merry Christmas

"This is line #$." → This is line 3

There are three more ways to construct string literals: %q, %Q, and “here documents.”

%q and %Q start delimited single- and double-quoted strings.

%q/general single-quoted string/ → general single-quoted string

%Q!general double-quoted string! → general double-quoted string

%Q{Seconds/day: #{24*60*60}} → Seconds/day: 86400

The character following the “q” or “Q” is the delimiter. If it is an opening bracket,
brace, parenthesis, or less-than sign, the string is read until the matching close symbol
is found. Otherwise the string is read until the next occurrence of the same delimiter.

Finally, you can construct a string using a here document.

aString = <<END_OF_STRING

The body of the string

is the input lines up to

one ending with the same

text that followed the ’<<’

END_OF_STRING

48 CHAPTER 5. STANDARD TYPES

A here document consists of lines in the source up to, but not including, the terminating
string that you specify after the < < characters. Normally, this terminator must start in
the first column. However, if you put a minus sign after the < < characters, you can
indent the terminator.

print <<-STRING1, <<-STRING2

Concat

STRING1

enate

STRING2

produces:
Concat

enate

Working with Strings
String is probably the largest built-in Ruby class, with over 75 standard methods. We
won’t go through them all here; the library reference has a complete list. Instead, we’ll
look at some common string idioms—things that are likely to pop up during day-to-day
programming.

Let’s get back to our jukebox. Although it’s designed to be connected to the Internet, it
also holds copies of some popular songs on a local hard drive. That way, if a squirrel
chews through our ’net connection we’ll still be able to entertain the customers.

For historical reasons (are there any other kind?), the list of songs is stored as rows in
a flat file. Each row holds the name of the file containing the song, the song’s duration,
the artist, and the title, all in vertical-bar-separated fields. A typical file might start:

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain’t Misbehavin’

/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World

/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

: : : :

Looking at the data, it’s clear that we’ll be using some of class String’s many methods
to extract and clean up the fields before we create Song objects based on them. At a
minimum, we’ll need to:

• break the line into fields,

• convert the running time from mm:ss to seconds, and

• remove those extra spaces from the artist’s name.

Our first task is to split each line into fields, and String#split will do the job nicely.
In this case, we’ll pass split a regular expression, /\s*\|\s*/, which splits the line
into tokens wherever split finds a vertical bar, optionally surrounded by spaces. And,
because the line read from the file has a trailing newline, we’ll use String#chomp to
strip it off just before we apply the split.

songs = SongList.new

songFile.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

STRINGS 49

songs.append Song.new(title, name, length)

end

puts songs[1]

produces:

Song: Wonderful World--Louis Armstrong (2:58)

Unfortunately, whoever created the original file entered the artists’ names in columns,
so some of them contain extra spaces. These will look ugly on our high-tech, super-
twist, flat-panel Day-Glo display, so we’d better remove these extra spaces before we
go much further. There are many ways of doing this, but probably the simplest is
String#squeeze, which trims runs of repeated characters. We’ll use the squeeze!

form of the method, which alters the string in place.

songs = SongList.new

songFile.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

name.squeeze!(" ")

songs.append Song.new(title, name, length)

end

puts songs[1]

produces:

Song: Wonderful World--Louis Armstrong (2:58)

Finally, there’s the minor matter of the time format: the file says 2:58, and we want the
number of seconds, 178. We could use split again, this time splitting the time field
around the colon character.

mins, secs = length.split(/:/)

Instead, we’ll use a related method. String#scan is similar to split in that it breaks
a string into chunks based on a pattern. However, unlike split, with scan you specify
the pattern that you want the chunks to match. In this case, we want to match one or
more digits for both the minutes and seconds component. The pattern for one or more
digits is /\d+/.

songs = SongList.new

songFile.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

name.squeeze!(" ")

mins, secs = length.scan(/\d+/)

songs.append Song.new(title, name, mins.to_i*60+secs.to_i)

end

puts songs[1]

produces:

Song: Wonderful World--Louis Armstrong (178)

Our jukebox has a keyword search capability. Given a word from a song title or an
artist’s name, it will list all matching tracks. Type in “fats,” and it might come back with
songs by Fats Domino, Fats Navarro, and Fats Waller, for example. We’ll implement
this by creating an indexing class. Feed it an object and some strings, and it will index
that object under every word (of two or more characters) that occurs in those strings.
This will illustrate a few more of class String’s many methods.

50 CHAPTER 5. STANDARD TYPES

class WordIndex

def initialize

@index = Hash.new(nil)

end

def index(anObject, *phrases)

phrases.each do |aPhrase|

aPhrase.scan /\w[-\w’]+/ do |aWord| # extract each word

aWord.downcase!

@index[aWord] = [] if @index[aWord].nil?

@index[aWord].push(anObject)

end

end

end

def lookup(aWord)

@index[aWord.downcase]

end

end

The String#scanmethod extracts elements from a string that match a regular expres-
sion. In this case, the pattern “\w[-\w’]+” matches any character that can appear in a
word, followed by one or more of the things specified in the brackets (a hyphen, another
word character, or a single quote). We’ll talk more about regular expressions beginning
on page 53. To make our searches case insensitive, we map both the words we extract
and the words used as keys during the lookup to lowercase. Note the exclamation mark
at the end of the first downcase! method name. As with the squeeze! method we
used previously, this is an indication that the method will modify the receiver in place,
in this case converting the string to lowercase.1

We’ll extend our SongList class to index songs as they’re added, and add a method to
look up a song given a word.

class SongList

def initialize

@songs = Array.new

@index = WordIndex.new

end

def append(aSong)

@songs.push(aSong)

@index.index(aSong, aSong.name, aSong.artist)

self

end

def lookup(aWord)

@index.lookup(aWord)

end

end

Finally, we’ll test it all.

songs = SongList.new

songFile.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

name.squeeze!(" ")

1. There’s a minor bug in this code example: the song “Gone, Gone, Gone” would get indexed three
times. Can you come up with a fix?

RANGES 51

mins, secs = length.scan(/\d+/)

songs.append Song.new(title, name, mins.to_i*60+secs.to_i)

end

puts songs.lookup("Fats")

puts songs.lookup("ain’t")

puts songs.lookup("RED")

puts songs.lookup("WoRlD")

produces:

Song: Ain’t Misbehavin’--Fats Waller (225)

Song: Ain’t Misbehavin’--Fats Waller (225)

Song: Texas Red--Strength in Numbers (249)

Song: Wonderful World--Louis Armstrong (178)

We could spend the next 50 pages looking at all the methods in class String. However,
let’s move on instead to look at a simpler datatype: ranges.

Ranges
Ranges occur everywhere: January to December, 0 to 9, rare to well-done, lines 50
through 67, and so on. If Ruby is to help us model reality, it seems natural for it to
support these ranges. In fact, Ruby goes one better: it actually uses ranges to implement
three separate features: sequences, conditions, and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence. Sequences
have a start point, an end point, and a way to produce successive values in the sequence.
In Ruby, these sequences are created using the “. .” and “. . .” range operators. The
two-dot form creates an inclusive range, while the three-dot form creates a range that
excludes the specified high value.

1..10

’a’..’z’

0...anArray.length

In Ruby, unlike in some earlier versions of Perl, ranges are not represented internally
as lists: the sequence 1..100000 is held as a Range object containing references to two
Fixnum objects. If you need to, you can convert a range to a list using the to_amethod.

(1..10).to_a → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

(’bar’..’bat’).to_a → ["bar", "bas", "bat"]

Ranges implement methods that let you iterate over them and test their contents in a
variety of ways.

52 CHAPTER 5. STANDARD TYPES

digits = 0..9

digits.include?(5) → true

digits.min → 0

digits.max → 9

digits.reject {|i| i < 5 } → [5, 6, 7, 8, 9]

digits.each do |digit|

dial(digit)

end

So far we’ve shown ranges of numbers and strings. However, as you’d expect from an
object-oriented language, Ruby can create ranges based on objects that you define. The
only constraints are that the objects must respond to succ by returning the next object
in sequence and the objects must be comparable using <=>, the general comparison
operator. Sometimes called the spaceship operator, <=> compares two values, returning
−1, 0, or +1 depending on whether the first is less than, equal to, or greater than the
second.

Here’s a simple class that represents rows of “#” signs. We might use it as a text-based
stub when testing the jukebox volume control.

class VU

include Comparable

attr :volume

def initialize(volume) # 0..9

@volume = volume

end

def inspect

’#’ * @volume

end

Support for ranges

def <=>(other)

self.volume <=> other.volume

end

def succ

raise(IndexError, "Volume too big") if @volume >= 9

VU.new(@volume.succ)

end

end

We can test it by creating a range of VU objects.

medium = VU.new(4)..VU.new(7)

medium.to_a → [####, #####, ######, #######]

medium.include?(VU.new(3)) → false

Ranges as Conditions
As well as representing sequences, ranges may also be used as conditional expres-
sions. For example, the following code fragment prints sets of lines from standard
input, where the first line in each set contains the word “start” and the last line the
word “end.”

while gets

print if /start/../end/

end

REGULAR EXPRESSIONS 53

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show
some examples of this in the description of loops that starts on page 77.

Ranges as Intervals
A final use of the versatile range is as an interval test: seeing if some value falls within
the interval represented by the range. This is done using ===, the case equality operator.

(1..10) === 5 → true

(1..10) === 15 → false

(1..10) === 3.14159 → true

(’a’..’j’) === ’c’ → true

(’a’..’j’) === ’z’ → false

The example of a case expression on page 76 shows this test in action, determining a
jazz style given a year.

Regular Expressions
Back on page 48 when we were creating a song list from a file, we used a regular
expression to match the field delimiter in the input file. We claimed that the expres-
sion line.split(/\s*\|\s*/)matched a vertical bar surrounded by optional white-
space. Let’s explore regular expressions in more detail to see why this claim is true.

Regular expressions are used to match patterns against strings. Ruby provides built-in
support that makes pattern matching and substitution convenient and concise. In this
section we’ll work through all the main features of regular expressions. There are some
details we won’t cover: have a look at page 187 for more information.

Regular expressions are objects of type Regexp. They can be created by calling the
constructor explicitly or by using the literal forms /pattern/ and %r{pattern}.

a = Regexp.new(’^\s*[a-z]’) → /^\s*[a-z]/

b = /^\s*[a-z]/ → /^\s*[a-z]/

c = %r{^\s*[a-z]} → /^\s*[a-z]/

Once you have a regular expression object, you can match it against a string using
Regexp#match(aString) or the match operators =~ (positive match) and !~ (nega-
tive match). The match operators are defined for both String and Regexp objects. If
both operands of the match operator are Strings, the one on the right will be converted
to a regular expression.

a = "Fats Waller"

a =~ /a/ → 1

a =~ /z/ → nil

a =~ "ll" → 7

The match operators return the character position at which the match occurred. They
also have the side effect of setting a whole load of Ruby variables. $& receives the part
of the string that was matched by the pattern, $‘ receives the part of the string that
preceded the match, and $’ receives the string after the match. We can use this to write
a method, showRE, which illustrates where a particular pattern matches.

54 CHAPTER 5. STANDARD TYPES

def showRE(a,re)

if a =~ re

"#{$`}<<#{$&}>>#{$’}"

else

"no match"

end

end

showRE(’very interesting’, /t/) → very in<<t>>eresting

showRE(’Fats Waller’, /ll/) → Fats Wa<<ll>>er

The match also sets the thread-global variables $~ and $1 through $9. The variable
$~ is a MatchData object (described beginning on page 307) that holds everything you
might want to know about the match. $1 and so on hold the values of parts of the match.
We’ll talk about these later. And for people who cringe when they see these Perl-like
variable names, stay tuned. There’s good news at the end of the chapter.

Patterns
Every regular expression contains a pattern, which is used to match the regular expres-
sion against a string.

Within a pattern, all characters except ., |, (,), [, {, +, \, ^, $, *, and ? match themselves.

showRE(’kangaroo’, /angar/) → k<<angar>>oo

showRE(’!@%&-_=+’, /%&/) → !@<<%&>>-_=+

If you want to match one of these special characters literally, precede it with a back-
slash. This explains part of the pattern we used to split the song line, /\s*\|\s*/.
The \| means “match a vertical bar.” Without the backslash, the “|” would have meant
alternation (which we’ll describe later).

showRE(’yes | no’, /\|/) → yes <<|>> no

showRE(’yes (no)’, /\(no\)/) → yes <<(no)>>

showRE(’are you sure?’, /e\?/) → are you sur<<e?>>

A backslash followed by an alphanumeric character is used to introduce a special match
construct, which we’ll cover later. In addition, a regular expression may contain #{...}
expression substitutions.

Anchors

By default, a regular expression will try to find the first match for the pattern in a
string. Match /iss/ against the string “Mississippi,” and it will find the substring “iss”
starting at position one. But what if you want to force a pattern to match only at the
start or end of a string?

The patterns ^ and $match the beginning and end of a line, respectively. These are often
used to anchor a pattern match: for example, /^option/ matches the word “option”
only if it appears at the start of a line. The sequence \A matches the beginning of a
string, and \z and \Z match the end of a string. (Actually, \Z matches the end of a
string unless the string ends with a “\n”, it which case it matches just before the “\n”.)

REGULAR EXPRESSIONS 55

showRE("this is\nthe time", /^the/) → this is\n<<the>> time

showRE("this is\nthe time", /is$/) → this <<is>>\nthe time

showRE("this is\nthe time", /\Athis/) → <<this>> is\nthe time

showRE("this is\nthe time", /\Athe/) → no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries,
respectively. Word characters are letters, numbers, and underscore.

showRE("this is\nthe time", /\bis/) → this <<is>>\nthe time

showRE("this is\nthe time", /\Bis/) → th<<is>> is\nthe time

Character Classes

A character class is a set of characters between brackets: [characters] matches any
single character between the brackets. [aeiou]will match a vowel, [,.:;!?]matches
punctuation, and so on. The significance of the special regular expression characters—
.|()[{+^$*?—is turned off inside the brackets. However, normal string substitution
still occurs, so (for example) \b represents a backspace character and \n a newline
(see Table 18.2 on page 185). In addition, you can use the abbreviations shown in
Table 5.1 on the next page, so that (for example) \s matches any whitespace character,
not just a literal space.

showRE(’It costs $12.’, /[aeiou]/) → It c<<o>>sts $12.

showRE(’It costs $12.’, /[\s]/) → It<< >>costs $12.

Within the brackets, the sequence c1-c2 represents all the characters between c1 and c2,
inclusive.

If you want to include the literal characters] and - within a character class, they must
appear at the start.

a = ’Gamma [Design Patterns-page 123]’

showRE(a, /[]]/) → Gamma [Design Patterns-page 123<<]>>

showRE(a, /[B-F]/) → Gamma [<<D>>esign Patterns-page 123]

showRE(a, /[-]/) → Gamma [Design Patterns<<->>page 123]

showRE(a, /[0-9]/) → Gamma [Design Patterns-page <<1>>23]

Put a ^ immediately after the opening bracket to negate a character class: [^a-z]
matches any character that isn’t a lowercase alphabetic.

Some character classes are used so frequently that Ruby provides abbreviations for
them. These abbreviations are listed in Table 5.1 on the following page—they may be
used both within brackets and in the body of a pattern.

showRE(’It costs $12.’, /\s/) → It<< >>costs $12.

showRE(’It costs $12.’, /\d/) → It costs $<<1>>2.

Finally, a period (“.”) appearing outside brackets represents any character except a new-
line (and in multiline mode it matches a newline, too).

a = ’It costs $12.’

showRE(a, /c.s/) → It <<cos>>ts $12.

showRE(a, /./) → <<I>>t costs $12.

showRE(a, /\./) → It costs $12<<.>>

56 CHAPTER 5. STANDARD TYPES

Table 5.1. Character class abbreviations
Sequence As [. . .] Meaning

\d [0-9] Digit character
\D [^0-9] Nondigit
\s [\s\t\r\n\f] Whitespace character
\S [^\s\t\r\n\f] Nonwhitespace character
\w [A-Za-z0-9_] Word character
\W [^A-Za-z0-9_] Nonword character

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we
wanted to match a vertical bar surrounded by an arbitrary amount of whitespace. We
now know that the \s sequences match a single whitespace character, so it seems likely
that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is one of a
number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then:

r* matches zero or more occurrences of r.
r+ matches one or more occurrences of r.
r? matches zero or one occurrence of r.
r{m,n} matches at least “m” and at most “n” occurrences of r.
r{m,} matches at least “m” occurrences of r.

These repetition constructs have a high precedence—they bind only to the immediately
preceding regular expression in the pattern. /ab+/ matches an “a” followed by one
or more “b”s, not a sequence of “ab”s. You have to be careful with the * construct
too—the pattern /a*/ will match any string; every string has zero or more “a”s.

These patterns are called greedy, because by default they will match as much of the
string as they can. You can alter this behavior, and have them match the minimum, by
adding a question mark suffix.

a = "The moon is made of cheese"

showRE(a, /\w+/) → <<The>> moon is made of cheese

showRE(a, /\s.*\s/) → The<< moon is made of >>cheese

showRE(a, /\s.*?\s/) → The<< moon >>is made of cheese

showRE(a, /[aeiou]{2,99}/) → The m<<oo>>n is made of cheese

showRE(a, /mo?o/) → The <<moo>>n is made of cheese

Alternation

We know that the vertical bar is special, because our line splitting pattern had to escape
it with a backslash. That’s because an unescaped vertical bar “|” matches either the
regular expression that precedes it or the regular expression that follows it.

a = "red ball blue sky"

showRE(a, /d|e/) → r<<e>>d ball blue sky

showRE(a, /al|lu/) → red b<<al>>l blue sky

showRE(a, /red ball|angry sky/) → <<red ball>> blue sky

REGULAR EXPRESSIONS 57

There’s a trap for the unwary here, as “ | ” has a very low precedence. The last example
above matches “red ball” or “angry sky”, not “red ball sky” or “red angry sky”. To
match “red ball sky” or “red angry sky”, you’d need to override the default precedence
using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within
the group is treated as a single regular expression.

showRE(’banana’, /an*/) → b<<an>>ana

showRE(’banana’, /(an)*/) → <<>>banana

showRE(’banana’, /(an)+/) → b<<anan>>a

a = ’red ball blue sky’

showRE(a, /blue|red/) → <<red>> ball blue sky

showRE(a, /(blue|red) \w+/) → <<red ball>> blue sky

showRE(a, /(red|blue) \w+/) → <<red ball>> blue sky

showRE(a, /red|blue \w+/) → <<red>> ball blue sky

showRE(a, /red (ball|angry) sky/) → no match

a = ’the red angry sky’

showRE(a, /red (ball|angry) sky/) → the <<red angry sky>>

Parentheses are also used to collect the results of pattern matching. Ruby counts open-
ing parentheses, and for each stores the result of the partial match between it and
the corresponding closing parenthesis. You can use this partial match both within the
remainder of the pattern and in your Ruby program. Within the pattern, the sequence
\1 refers to the match of the first group, \2 the second group, and so on. Outside the
pattern, the special variables $1, $2, and so on, serve the same purpose.

"12:50am" =~ /(\d\d):(\d\d)(..)/ → 0

"Hour is #$1, minute #$2" → "Hour is 12, minute 50"

"12:50am" =~ /((\d\d):(\d\d))(..)/ → 0

"Time is #$1" → "Time is 12:50"

"Hour is #$2, minute #$3" → "Hour is 12, minute 50"

"AM/PM is #$4" → "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for
various forms of repetition.

match duplicated letter

showRE(’He said "Hello"’, /(\w)\1/) → He said "He<<ll>>o"

match duplicated substrings

showRE(’Mississippi’, /(\w+)\1/) → M<<ississ>>ippi

You can also use back references to match delimiters.
showRE(’He said "Hello"’, /(["’]).*?\1/) → He said <<"Hello">>

showRE("He said ’Hello’", /(["’]).*?\1/) → He said <<’Hello’>>

Pattern-Based Substitution
Sometimes finding a pattern in a string is good enough. If a friend challenges you to
find a word that contains the letters a, b, c, d, and e in order, you could search a word
list with the pattern /a.*b.*c.*d.*e/ and find “absconded” and “ambuscade.” That
has to be worth something.

58 CHAPTER 5. STANDARD TYPES

However, there are times when you need to change things based on a pattern match.
Let’s go back to our song list file. Whoever created it entered all the artists’ names in
lowercase. When we display them on our jukebox’s screen, they’d look better in mixed
case. How can we change the first character of each word to uppercase?

The methods String#sub and String#gsub look for a portion of a string matching
their first argument and replace it with their second argument. String#sub performs
one replacement, while String#gsub replaces every occurrence of the match. Both
routines return a new copy of the String containing the substitutions. Mutator versions
String#sub! and String#gsub!modify the original string.

a = "the quick brown fox"

a.sub(/[aeiou]/, ’*’) → "th* quick brown fox"

a.gsub(/[aeiou]/, ’*’) → "th* q**ck br*wn f*x"

a.sub(/\s\S+/, ”) → "the brown fox"

a.gsub(/\s\S+/, ”) → "the"

The second argument to both functions can be either a String or a block. If a block is
used, the block’s value is substituted into the String.

a = "the quick brown fox"

a.sub(/^./) { $&.upcase } → "The quick brown fox"

a.gsub(/[aeiou]/) { $&.upcase } → "thE qUIck brOwn fOx"

So, this looks like the answer to converting our artists’ names. The pattern that matches
the first character of a word is \b\w—look for a word boundary followed by a word
character. Combine this with gsub and we can hack the artists’ names.

def mixedCase(aName)

aName.gsub(/\b\w/) { $&.upcase }

end

mixedCase("fats waller") → "Fats Waller"

mixedCase("louis armstrong") → "Louis Armstrong"

mixedCase("strength in numbers") → "Strength In Numbers"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on are available in the pattern,
standing for the nth group matched so far. The same sequences are available in the
second argument of sub and gsub.

"fred:smith".sub(/(\w+):(\w+)/, ’\2, \1’) → "smith, fred"

"nercpyitno".gsub(/(.)(.)/, ’\2\1’) → "encryption"

There are additional backslash sequences that work in substitution strings: \& (last
match), \+ (last matched group), \‘ (string prior to match), \’ (string after match),
and \\ (a literal backslash).

It gets confusing if you want to include a literal backslash in a substitution. The obvious
thing is to write

str.gsub(/\\/, ’\\\\’)

Clearly, this code is trying to replace each backslash in str with two. The programmer
doubled up the backslashes in the replacement text, knowing that they’d be converted to
“\\” in syntax analysis. However, when the substitution occurs, the regular expression

REGULAR EXPRESSIONS 59

engine performs another pass through the string, converting “\\” to “\”, so the net
effect is to replace each single backslash with another single backslash. You need to
write gsub(/\\/, ’\\\\\\\\’)!

str = ’a\b\c’ → "a\b\c"

str.gsub(/\\/, ’\\\\\\\\’) → "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write

str = ’a\b\c’ → "a\b\c"

str.gsub(/\\/, ’\&\&’) → "a\\b\\c"

If you use the block form of gsub, the string for substitution is analyzed only once
(during the syntax pass) and the result is what you intended.

str = ’a\b\c’ → "a\b\c"

str.gsub(/\\/) { ’\\\\’ } → "a\\b\\c"

Finally, as an example of the wonderful expressiveness of combining regular expres-
sions with code blocks, consider the following code fragment from the CGI library
module, written by Wakou Aoyama. The code takes a string containing HTML escape
sequences and converts it into normal ASCII. Because it was written for a Japanese
audience, it uses the “n” modifier on the regular expressions, which turns off wide-
character processing. It also illustrates Ruby’s case expression, which we discuss start-
ing on page 76.

def unescapeHTML(string)

str = string.dup

str.gsub!(/&(.*?);/n) {

match = $1.dup

case match

when /\Aamp\z/ni then ’&’

when /\Aquot\z/ni then ’"’

when /\Agt\z/ni then ’>’

when /\Alt\z/ni then ’<’

when /\A#(\d+)\z/n then Integer($1).chr

when /\A#x([0-9a-f]+)\z/ni then $1.hex.chr

end

}

str

end

puts unescapeHTML("1<2 && 4>3")

puts unescapeHTML(""A" = A = A")

produces:
1<2 && 4>3

"A" = A = A

Object-Oriented Regular Expressions
We have to admit that while all these weird variables are very convenient to use, they
aren’t very object oriented, and they’re certainly cryptic. And didn’t we say that every-
thing in Ruby was an object? What’s gone wrong here?

Nothing, really. It’s just that when Matz designed Ruby, he produced a fully object-
oriented regular expression handling system. He then made it look familiar to Perl

60 CHAPTER 5. STANDARD TYPES

programmers by wrapping all these $-variables on top of it all. The objects and classes
are still there, underneath the surface. So let’s spend a while digging them out.

We’ve already come across one class: regular expression literals create instances of
class Regexp (documented beginning on page 331).

re = /cat/

re.class → Regexp

The method Regexp#match matches a regular expression against a string. If unsuc-
cessful, the method returns nil. On success, it returns an instance of class MatchData,
documented beginning on page 307. And that MatchData object gives you access to
all available information about the match. All that good stuff that you can get from the
$-variables is bundled in a handy little object.

re = /(\d+):(\d+)/ # match a time hh:mm

md = re.match("Time: 12:34am")

md.class → MatchData

md[0] # == $& → "12:34"

md[1] # == $1 → "12"

md[2] # == $2 → "34"

md.pre_match # == $` → "Time: "

md.post_match # == $’ → "am"

Because the match data is stored in its own object, you can keep the results of two
or more pattern matches available at the same time, something you can’t do using the
$-variables. In the next example, we’re matching the same Regexp object against two
strings. Each match returns a unique MatchData object, which we verify by examining
the two subpattern fields.

re = /(\d+):(\d+)/ # match a time hh:mm

md1 = re.match("Time: 12:34am")

md2 = re.match("Time: 10:30pm")

md1[1, 2] → ["12", "34"]

md2[1, 2] → ["10", "30"]

So how do the $-variables fit in? Well, after every pattern match, Ruby stores a refer-
ence to the result (nil or a MatchData object) in a thread-local variable (accessible
using $~). All the other regular expression variables are then derived from this object.
Although we can’t really think of a use for the following code, it demonstrates that all
the other MatchData-related $-variables are indeed slaved off the value in $~.

re = /(\d+):(\d+)/

md1 = re.match("Time: 12:34am")

md2 = re.match("Time: 10:30pm")

[$1, $2] # last successful match → ["10", "30"]

$~ = md1

[$1, $2] # previous successful match → ["12", "34"]

Having said all this, we have to ’fess up. Andy and Dave normally use the $-variables
rather than worrying about MatchData objects. For everyday use, they just end up
being more convenient. Sometimes we just can’t help being pragmatic.

Chapter 6

More About Methods

Other languages have functions, procedures, methods, or routines, but in Ruby there is
only the method—a chunk of expressions that return a value.

So far in this book, we’ve been defining and using methods without much thought. Now
it’s time to get into the details.

Defining a Method
As we’ve seen throughout this book, a method is defined using the keyword def.
Method names should begin with a lowercase letter.1 Methods that act as queries are
often named with a trailing “?”, such as instance_of?. Methods that are “danger-
ous,” or modify the receiver, might be named with a trailing “!”. For instance, String
provides both a chop and a chop!. The first one returns a modified string; the second
modifies the receiver in place. “?” and “!” are the only weird characters allowed as
method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some
parameters. These are simply a list of local variable names in parentheses. Some sample
method declarations are

def myNewMethod(arg1, arg2, arg3) # 3 arguments

Code for the method would go here

end

def myOtherNewMethod # No arguments

Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used
if the caller doesn’t pass them explicitly. This is done using the assignment operator.

1. You won’t get an immediate error if you use an uppercase letter, but when Ruby sees you calling the
method, it will first guess that it is a constant, not a method invocation, and as a result it may parse the call
incorrectly.

61

62 CHAPTER 6. MORE ABOUT METHODS

def coolDude(arg1="Miles", arg2="Coltrane", arg3="Roach")

"#{arg1}, #{arg2}, #{arg3}."

end

coolDude → "Miles, Coltrane, Roach."

coolDude("Bart") → "Bart, Coltrane, Roach."

coolDude("Bart", "Elwood") → "Bart, Elwood, Roach."

coolDude("Bart", "Elwood", "Linus") → "Bart, Elwood, Linus."

The body of a method contains normal Ruby expressions, except that you may not
define an instance method, class, or module within a method. The return value of a
method is the value of the last expression executed, or the result of an explicit return
expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments, or want to capture
multiple arguments into a single parameter? Placing an asterisk before the name of the
parameter after the “normal” parameters does just that.

def varargs(arg1, *rest)

"Got #{arg1} and #{rest.join(’, ’)}"

end

varargs("one") → "Got one and "

varargs("one", "two") → "Got one and two"

varargs "one", "two", "three" → "Got one and two, three"

In this example, the first argument is assigned to the first method parameter as usual.
However, the next parameter is prefixed with an asterisk, so all the remaining arguments
are bundled into a new Array, which is then assigned to that parameter.

Methods and Blocks

As we discussed in the section on blocks and iterators beginning on page 36, when a
method is called, it may be associated with a block. Normally, you simply call the block
from within the method using yield.

def takeBlock(p1)

if block_given?

yield(p1)

else

p1

end

end

takeBlock("no block") → "no block"

takeBlock("no block") { |s| s.sub(/no /, ”) } → "block"

However, if the last parameter in a method definition is prefixed with an ampersand,
any associated block is converted to a Proc object, and that object is assigned to the
parameter.

CALLING A METHOD 63

class TaxCalculator

def initialize(name, &block)

@name, @block = name, block

end

def getTax(amount)

"#@name on #{amount} = #{ @block.call(amount) }"

end

end

tc = TaxCalculator.new("Sales tax") { |amt| amt * 0.075 }

tc.getTax(100) → "Sales tax on 100 = 7.5"

tc.getTax(250) → "Sales tax on 250 = 18.75"

Calling a Method
You call a method by specifying a receiver, the name of the method, and optionally
some parameters and an associated block.

connection.downloadMP3("jitterbug") { |p| showProgress(p) }

In this example, the object connection is the receiver, downloadMP3 is the name of
the method, "jitterbug" is the parameter, and the stuff between the braces is the
associated block.

For class and module methods, the receiver will be the class or module name.

File.size("testfile")

Math.sin(Math::PI/4)

If you omit the receiver, it defaults to self, the current object.

self.id → 1907986

id → 1907986

self.class → Object

This defaulting mechanism is how Ruby implements private methods. Private methods
may not be called with a receiver, so they must be methods available in the current
object.

The optional parameters follow the method name. If there is no ambiguity you can omit
the parentheses around the argument list when calling a method.2 However, except in
the simplest cases we don’t recommend this—there are some subtle problems that can
trip you up.3 Our rule is simple: if there’s any doubt, use parentheses.

a = obj.hash # Same as

a = obj.hash() # this.

obj.someMethod "Arg1", arg2, arg3 # Same thing as

obj.someMethod("Arg1", arg2, arg3) # with parentheses.

2. Other Ruby documentation sometimes calls these method calls without parentheses “commands.”

3. In particular, you must use parentheses on a method call that is itself a parameter to another method
call (unless it is the last parameter).

64 CHAPTER 6. MORE ABOUT METHODS

Expanding Arrays in Method Calls

Earlier we saw that if you put an asterisk in front of a formal parameter in a method
definition, multiple arguments in the call to the method will be bundled up into an array.
Well, the same thing works in reverse.

When you call a method, you can explode an array, so that each of its members is taken
as a separate parameter. Do this by prefixing the array argument (which must follow all
the regular arguments) with an asterisk.

def five(a, b, c, d, e)

"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) → "I was passed 1 2 3 4 5"

five(1, 2, 3, *[’a’, ’b’]) → "I was passed 1 2 3 a b"

five(*(10..14).to_a) → "I was passed 10 11 12 13 14"

Making Blocks More Dynamic

We’ve already seen how you can associate a block with a method call.

listBones("aardvark") do |aBone|

...

end

Normally, this is perfectly good enough—you associate a fixed block of code with a
method, in the same way you’d have a chunk of code after an if or while statement.

Sometimes, however, you’d like to be more flexible. For example, we may be teaching
math skills.4 The student could ask for an n-plus table or an n-times table. If the student
asked for a 2-times table, we’d output 2, 4, 6, 8, and so on. (This code does not check
its inputs for errors.)

print "(t)imes or (p)lus: "

times = gets

print "number: "

number = gets.to_i

if times =~ /^t/

puts((1..10).collect { |n| n*number }.join(", "))

else

puts((1..10).collect { |n| n+number }.join(", "))

end

produces:

(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if state-
ment. If would be nice if we could factor out the block that does the calculation.

4. Of course, Andy and Dave would have to learn math skills first. Conrad Schneiker reminded us that
there are three kinds of people: those who can count and those who can’t.

CALLING A METHOD 65

print "(t)imes or (p)lus: "

times = gets

print "number: "

number = gets.to_i

if times =~ /^t/

calc = proc { |n| n*number }

else

calc = proc { |n| n+number }

end

puts((1..10).collect(&calc).join(", "))

produces:
(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it
is a Proc object. It removes it from the parameter list, converts the Proc object into a
block, and associates it with the method.

This technique can also be used to add some syntactic sugar to block usage. For exam-
ple, you sometimes want to take an iterator and store each value it yields into an array.
We’ll reuse our Fibonacci number generator from page 37.

a = []

fibUpTo(20) { |val| a << val } → nil

a.inspect → "[1, 1, 2, 3, 5, 8, 13]"

This works, but our intention isn’t quite as transparent as we may like. Instead, we’ll
define a method called into, which returns the block that fills the array. (Notice at
the same time that the block returned really is a closure—it references the parameter
anArray even after method into has returned.)

def into(anArray)

return proc { |val| anArray << val }

end

fibUpTo 20, &into(a = [])

a.inspect → "[1, 1, 2, 3, 5, 8, 13]"

Collecting Hash Arguments

Some languages feature “keyword arguments”—that is, instead of passing arguments
in a given order and quantity, you pass the name of the argument with its value, in any
order. Ruby 1.6 does not have keyword arguments (although they are scheduled to be
implemented in Ruby 1.8).

In the meantime, people are using hashes as a way of achieving the same effect. For
example, we might consider adding a more powerful named-search facility to our
SongList.

class SongList

def createSearch(name, params)

...

end

end

66 CHAPTER 6. MORE ABOUT METHODS

aList.createSearch("short jazz songs", {

’genre’ => "jazz",

’durationLessThan’ => 270

})

The first parameter is the search name, and the second is a hash literal containing search
parameters. The use of a hash means that we can simulate keywords: look for songs
with a genre of “jazz” and a duration less than 4 1

2
minutes. However, this approach is

slightly clunky, and that set of braces could easily be mistaken for a block associated
with the method. So, Ruby has a short cut. You can place key => value pairs in an
argument list, as long as they follow any normal arguments and precede any array and
block arguments. All these pairs will be collected into a single hash and passed as one
argument to the method. No braces are needed.

aList.createSearch("short jazz songs",

’genre’ => "jazz",

’durationLessThan’ => 270

)

Chapter 7

Expressions

So far we’ve been fairly cavalier in our use of expressions in Ruby. After all, a = b + c
is pretty standard stuff. You could write a whole heap of Ruby code without reading
any of this chapter.

But it wouldn’t be as much fun ;-).

One of the first differences with Ruby is that anything that can reasonably return a value
does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together.

a = b = c = 0 → 0

[3, 1, 7, 0].sort.reverse → [7, 3, 1, 0]

Perhaps less obvious, things that are normally statements in C or Java are expressions
in Ruby. For example, the if and case statements both return the value of the last
expression executed.

songType = if song.mp3Type == MP3::Jazz

if song.written < Date.new(1935, 1, 1)

Song::TradJazz

else

Song::Jazz

end

else

Song::Other

end

rating = case votesCast

when 0...10 then Rating::SkipThisOne

when 10...50 then Rating::CouldDoBetter

else Rating::Rave

end

We’ll talk more about if and case starting on page 74.

Operator Expressions
Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A
complete list of the operators, and their precedences, is given in Table 18.4 on page 199.

67

68 CHAPTER 7. EXPRESSIONS

In Ruby, many operators are actually method calls. When you write a*b + c you’re
actually asking the object referenced by a to execute the method “*”, passing in the
parameter b. You then ask the object that results from that calculation to execute “+”,
passing c as a parameter. This is exactly equivalent to writing

(a.*(b)).+(c)

Because everything is an object, and because you can redefine instance methods, you
can always redefine basic arithmetic if you don’t like the answers you’re getting.

class Fixnum

alias oldPlus +

def +(other)

oldPlus(other).succ

end

end

1 + 2 → 4

a = 3

a += 4 → 8

More useful is the fact that classes that you write can participate in operator expressions
just as if they were built-in objects. For example, we might want to be able to extract
a number of seconds of music from the middle of a song. We could using the indexing
operator “[]” to specify the music to be extracted.

class Song

def [](fromTime, toTime)

result = Song.new(self.title + " [extract]",

self.artist,

toTime - fromTime)

result.setStartTime(fromTime)

result

end

end

This code fragment extends class Song with the method “[]”, which takes two param-
eters (a start time and an end time). It returns a new song, with the music clipped to the
given interval. We could then play the introduction to a song with code such as:

aSong[0, 0.15].play

Miscellaneous Expressions
As well as the obvious operator expressions and method calls, and the (perhaps) less
obvious statement expressions (such as if and case), Ruby has a few more things that
you can use in expressions.

Command Expansion
If you enclose a string in backquotes, or use the delimited form prefixed by %x, it will
(by default) be executed as a command by your underlying operating system. The value

ASSIGNMENT 69

of the expression is the standard output of that command. Newlines will not be stripped,
so it is likely that the value you get back will have a trailing return or linefeed character.

`date` → "Thu Dec 26 20:04:28 MSK 2002\n"

`dir`.split[34] → "macros.pic"

%x{echo "Hello there"} → "Hello there\n"

You can use expression expansion and all the usual escape sequences in the command
string.

for i in 0..3

status = `dbmanager status id=#{i}`

...

end

The exit status of the command is available in the global variable $?.

Backquotes Are Soft

In the description of the command output expression, we said that the string in back-
quotes would “by default” be executed as a command. In fact, the string is passed to
the method called Kernel.` (a single backquote). If you want, you can override this.

alias oldBackquote `

def `(cmd)

result = oldBackquote(cmd)

if $? != 0

raise "Command #{cmd} failed"

end

result

end

print `date`

print `data`

produces:

Thu Dec 26 20:04:29 MSK 2002

prog.rb:3: command not found: data

prog.rb:5:in ``’: Command data failed (RuntimeError)

from prog.rb:10

Assignment
Just about every example we’ve given so far in this book has featured assignment.
Perhaps it’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the lvalue) to
refer to the value on the right (the rvalue). It then returns that value as the result of the
assignment expression. This means that you can chain assignments and that you can
perform assignments in some unexpected places.

70 CHAPTER 7. EXPRESSIONS

a = b = 1 + 2 + 3

a → 6

b → 6

a = (b = 1 + 2) + 3

a → 6

b → 3

File.open(name = gets.chomp)

There are two basic forms of assignment in Ruby. The first assigns an object reference
to a variable or constant. This form of assignment is hard-wired into the language.

instrument = "piano"

MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference
on the left-hand side.

aSong.duration = 234

instrument["ano"] = "ccolo"

These forms are special, because they are implemented by calling methods in the
lvalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method
name ending in an equals sign. This method receives as its parameter the assignment’s
rvalue.

class Song

def duration=(newDuration)

@duration = newDuration

end

end

There is no reason that these attribute setting methods must correspond with internal
instance variables, or that there has to be an attribute reader for every attribute writer
(or vice versa).

class Amplifier

def volume=(newVolume)

self.leftChannel = self.rightChannel = newVolume

end

...

end

Parallel Assignment
During your first week in a programming course (or the second semester if it was a
party school), you may have had to write code to swap the values in two variables:

int a = 1;

int b = 2;

int temp;

temp = a;

a = b;

b = temp;

You can do this much more cleanly in Ruby:

ASSIGNMENT 71

Using Accessors Within a Class

Why did we write self.leftChannel in the example on page 70?
Well, there’s a hidden gotcha with writable attributes. Normally, meth-
ods within a class can invoke other methods in the same class and
its superclasses in functional form (that is, with an implicit receiver
of self). However, this doesn’t work with attribute writers. Ruby sees
the assignment and decides that the name on the left must be a local
variable, not a method call to an attribute writer.

class BrokenAmplifier
attr_accessor :leftChannel, :rightChannel
def volume=(vol)

leftChannel = self.rightChannel = vol
end

end

ba = BrokenAmplifier.new
ba.leftChannel = ba.rightChannel = 99
ba.volume = 5
ba.leftChannel → 99
ba.rightChannel → 5

We forgot to put “self.” in front of the assignment to leftChannel,
so Ruby stored the new value in a local variable of method volume=;
the object’s attribute never got updated. This can be a tricky bug to
track down.

a, b = b, a

Ruby assignments are effectively performed in parallel, so the values assigned are not
affected by the assignment itself. The values on the right-hand side are evaluated in the
order in which they appear before any assignment is made to variables or attributes on
the left. A somewhat contrived example illustrates this. The second line assigns to the
variables a, b, and c the values of the expressions x, x += 1, and x += 1, respectively.

x = 0 → 0

a, b, c = x, (x += 1), (x += 1) → [0, 1, 2]

When an assignment has more than one lvalue, the assignment expression returns an
array of the rvalues. If an assignment contains more lvalues than rvalues, the excess
lvalues are set to nil. If a multiple assignment contains more rvalues than lvalues,
the extra rvalues are ignored. As of Ruby 1.6.2, if an assignment has one lvalue and
multiple rvalues, the rvalues are converted to an array and assigned to the lvalue.

You can collapse and expand arrays using Ruby’s parallel assignment operator. If the
last lvalue is preceded by an asterisk, all the remaining rvalues will be collected and
assigned to that lvalue as an array. Similarly, if the last rvalue is an array, you can prefix
it with an asterisk, which effectively expands it into its constituent values in place. (This
is not necessary if the rvalue is the only thing on the right-hand side—the array will be
expanded automatically.)

72 CHAPTER 7. EXPRESSIONS

a = [1, 2, 3, 4]

Nested Assignments

Parallel assignments have one more feature worth mentioning. The left-hand side of an
assignment may contain a parenthesized list of terms. Ruby treats these terms as if they
were a nested assignment statement. It extracts out the corresponding rvalue, assigning
it to the parenthesized terms, before continuing with the higher-level assignment.

Other Forms of Assignment
In common with many other languages, Ruby has a syntactic shortcut: a = a + 2 may
be written as a += 2.

The second form is converted internally to the first. This means that operators that you
have defined as methods in your own classes work as you’d expect.

class Bowdlerize

def initialize(aString)

@value = aString.gsub(/[aeiou]/, ’*’)

end

def +(other)

Bowdlerize.new(self.to_s + other.to_s)

end

def to_s

@value

end

end

a = Bowdlerize.new("damn ") → d*mn

a += "shame" → d*mn sh*m*

Conditional Execution
Ruby has several different mechanisms for conditional execution of code; most of them
should feel familiar, and many have some neat twists. Before we get into them, though,
we need to spend a short time looking at boolean expressions.

Boolean Expressions
Ruby has a simple definition of truth. Any value that is not nil or the constant false
is true. You’ll find that the library routines use this fact consistently. For example,
IO#gets, which returns the next line from a file, returns nil at end of file, enabling
you to write loops such as:

while line = gets

process line

end

CONDITIONAL EXECUTION 73

However, there’s a trap here for C, C++, and Perl programmers. The number zero is not
interpreted as a false value. Neither is a zero-length string. This can be a tough habit to
break.

Defined?, And, Or, and Not

Ruby supports all the standard boolean operators and introduces the new operator
defined?.

Both “and” and “&&” evaluate to true only if both operands are true. They evaluate
the second operand only if the first is true (this is sometimes known as “short-circuit
evaluation”). The only difference in the two forms is precedence (“and” binds lower
than “&&”).

Similarly, both “or” and “||” evaluate to true if either operand is true. They evalu-
ate their second operand only if the first is false. As with “and”, the only difference
between “or” and “||” is their precedence.

Just to make life interesting, “and” and “or” have the same precedence, while “&&” has
a higher precedence than “||”.

“not” and “!” return the opposite of their operand (false if the operand is true, and true
if the operand is false). And, yes, “not” and “!” differ only in precedence.

All these precedence rules are summarized in Table 18.4 on page 199.

The defined? operator returns nil if its argument (which can be an arbitrary expres-
sion) is not defined, otherwise it returns a description of that argument. If the argument
is yield, defined? returns the string “yield” if a code block is associated with the
current context.

defined? 1

defined? dummy

defined? printf

defined? String

defined? $&

defined? $_

defined? Math::PI

defined? (c,d = 1,2)

defined? 42.abs

In addition to the boolean operators, Ruby objects support comparison using the meth-
ods ==, ===, <=>, =~, eql?, and equal? (see Table 7.1 on the next page). All but <=>
are defined in class Object but are often overridden by descendents to provide appro-
priate semantics. For example, class Array redefines == so that two array objects are
equal if they have the same number of elements and corresponding elements are equal.

Both == and =~ have negated forms, != and !~. However, these are converted by Ruby
when your program is read. a != b is equivalent to !(a == b), and a !~ b is the same
as !(a =~ b). This means that if you write a class that overrides == or =~ you get a
working != and !~ for free. But on the flip side, this also means that you cannot define
!= and !~ independent of == and =~, respectively.

74 CHAPTER 7. EXPRESSIONS

Table 7.1. Common comparison operators

Operator Meaning

== Test for equal value.
=== Used to test equality within a when clause of a case statement.
<=> General comparison operator. Returns −1, 0, or +1, depending on

whether its receiver is less than, equal to, or greater than its argument.
<, <=, >=, > Comparison operators for less than, less than or equal, greater than or

equal, and greater than.
=~ Regular expression pattern match.
eql? True if the receiver and argument have both the same type and equal

values. 1 == 1.0 returns true, but 1.eql?(1.0) is false.
equal? True if the receiver and argument have the same object id.

You can use a Ruby range as a boolean expression. A range such as exp1..exp2 will
evaluate as false until exp1 becomes true. The range will then evaluate as true until
exp2 becomes true. Once this happens, the range resets, ready to fire again. We show
some examples of this on page 77.

Finally, you can use a bare regular expression as a boolean expression. Ruby expands
it to $_ =~ /re/.

If and Unless Expressions
An if expression in Ruby is pretty similar to “if” statements in other languages.

if aSong.artist == "Gillespie" then

handle = "Dizzy"

elsif aSong.artist == "Parker" then

handle = "Bird"

else

handle = "unknown"

end

If you lay out your if statements on multiple lines, you can leave off the then keyword.

if aSong.artist == "Gillespie"

handle = "Dizzy"

elsif aSong.artist == "Parker"

handle = "Bird"

else

handle = "unknown"

end

However, if you lay your code out more tightly, the then keyword is necessary to
separate the boolean expression from the following statements.

if aSong.artist == "Gillespie" then handle = "Dizzy"

elsif aSong.artist == "Parker" then handle = "Bird"

else handle = "unknown"

end

CONDITIONAL EXECUTION 75

You can have zero or more elsif clauses and an optional else clause.

As we’ve said before, if is an expression, not a statement—it returns a value. You don’t
have to use the value of an if expression, but it can come in handy.

handle = if aSong.artist == "Gillespie" then

"Dizzy"

elsif aSong.artist == "Parker" then

"Bird"

else

"unknown"

end

Ruby also has a negated form of the if statement:

unless aSong.duration > 180 then

cost = .25

else

cost = .35

end

Finally, for the C fans out there, Ruby also supports the C-style conditional expression:

cost = aSong.duration > 180 ? .35 : .25

The conditional expression returns the value of either the expression before or the
expression after the colon, depending on whether the boolean expression before the
question mark evaluates to true or false. In this case, if the song duration is greater
than 3 minutes, the expression returns .35. For shorter songs, it returns .25. Whatever
the result, it is then assigned to cost.

If and Unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional state-
ments onto the end of a normal statement.

mon, day, year = $1, $2, $3 if /(\d\d)-(\d\d)-(\d\d)/

puts "a = #{a}" if fDebug

print total unless total == 0

produces:

-:2: warning: regex literal in condition

For an if modifier, the preceding expression will be evaluated only if the condition is
true. unless works the other way around.

while gets

next if /^#/ # Skip comments

parseLine unless /^$/ # Don’t parse empty lines

end

produces:

-:2: warning: regex literal in condition

-:3: warning: regex literal in condition

Because if itself is an expression, you can get really obscure with statements such as:

76 CHAPTER 7. EXPRESSIONS

if artist == "John Coltrane"

artist = "’Trane"

end unless nicknames == "no"

This path leads to the gates of madness.

Case Expressions
The Ruby case expression is a powerful beast: a multiway if on steroids.

case inputLine

when "debug"

dumpDebugInfo

dumpSymbols

when /p\s+(\w+)/

dumpVariable($1)

when "quit", "exit"

exit

else

print "Illegal command: #{inputLine}"

end

As with if, case returns the value of the last expression executed, and you also need
a then keyword if the expression is on the same line as the condition.

kind = case year

when 1850..1889 then "Blues"

when 1890..1909 then "Ragtime"

when 1910..1929 then "New Orleans Jazz"

when 1930..1939 then "Swing"

when 1940..1950 then "Bebop"

else "Jazz"

end

case operates by comparing the target (the expression after the keyword case) with
each of the comparison expressions after the when keywords. This test is done using
comparison === target. As long as a class defines meaningful semantics for === (and
all the built-in classes do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match.

case line

when /title=(.*)/

puts "Title is #$1"

when /track=(.*)/

puts "Track is #$1"

when /artist=(.*)/

puts "Artist is #$1"

end

Ruby classes are instances of class Class, which defines === as a test to see if the
argument is an instance of the class or one of its superclasses. So (abandoning the
benefits of polymorphism and bringing the gods of refactoring down around your ears),
you can test the class of objects:

LOOPS 77

case shape

when Square, Rectangle

...

when Circle

...

when Triangle

...

else

...

end

Loops
Don’t tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true.
For example, this common idiom reads until the input is exhausted.

while gets

...

end

There’s also a negated form that executes the body until the condition becomes true.

until playList.duration > 60

playList.add(songList.pop)

end

As with if and unless, both of the loops can also be used as statement modifiers.

a *= 2 while a < 100

a -= 10 until a < 100

On page 74 in the section on boolean expressions, we said that a range can be used as
a kind of flip-flop, returning true when some event happens and then staying true until
a second event occurs. This facility is normally used within loops. In the example that
follows, we read a text file containing the first ten ordinal numbers (“first,” “second,”
and so on) but only print the lines starting with the one that matches “third” and ending
with the one that matches “fifth.”

file = File.open("ordinal")

while file.gets

print if /third/ .. /fifth/

end

produces:

first

second

third

fourth

fifth

sixth

seventh

eighth

ninth

78 CHAPTER 7. EXPRESSIONS

tenth

The elements of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example,
the following code uses the fact that the variable $. contains the current input line
number to display line numbers one through three and those between a match of /eig/
and /nin/.

file = File.open("ordinal")

while file.gets

print if ($. == 1) || /eig/ .. ($. == 3) || /nin/

end

produces:
first

second

third

fourth

fifth

sixth

seventh

eighth

ninth

tenth

There’s one wrinkle when while and until are used as statement modifiers. If the
statement they are modifying is a begin/end block, the code in the block will always
execute at least one time, regardless of the value of the boolean expression.

print "Hello\n" while false

begin

print "Goodbye\n"

end while false

produces:
Goodbye

Iterators
If you read the beginning of the previous section, you might have been discouraged.
“Ruby has pretty primitive built-in looping constructs,” it said. Don’t despair, gen-
tle reader, for there’s good news. Ruby doesn’t need any sophisticated built-in loops,
because all the fun stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a “for” loop—at least not the kind you’d find in C,
C++, and Java. Instead, Ruby uses methods defined in various built-in classes to provide
equivalent, but less error-prone, functionality.

Let’s look at some examples.

3.times do

print "Ho! "

end

produces:
Ho! Ho! Ho!

LOOPS 79

It’s easy to avoid fencepost and off-by-1 errors; this loop will execute three times,
period. In addition to times, integers can loop over specific ranges by calling downto,
upto, and step. For instance, a traditional “for” loop that runs from 0 to 9 (something
like i=0; i < 10; i++) is written as follows.

0.upto(9) do |x|

print x, " "

end

produces:
0 1 2 3 4 5 6 7 8 9

A loop from 0 to 12 by 3 can be written as follows.

0.step(12, 3) {|x| print x, " " }

produces:
0 3 6 9 12

Similarly, iterating over arrays and other containers is made easy using their each
method.

[1, 1, 2, 3, 5].each {|val| print val, " " }

produces:
1 1 2 3 5

And once a class supports each, the additional methods in the Enumerable module
(documented beginning on page 369 and summarized on pages 96–96) become avail-
able. For example, the File class provides an each method, which returns each line of
a file in turn. Using the grep method in Enumerable, we could iterate over only those
lines that meet a certain condition.

File.open("ordinal").grep /d$/ do |line|

print line

end

produces:
second

third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator
called loop.

loop {

block ...

}

The loop iterator calls the associated block forever (or at least until you break out of
the loop, but you’ll have to read ahead to find out how to do that).

For . . . In
Earlier we said that the only built-in Ruby looping primitives were while and until.
What’s this “for” thing, then? Well, for is almost a lump of syntactic sugar. When
you write

80 CHAPTER 7. EXPRESSIONS

for aSong in songList

aSong.play

end

Ruby translates it into something like:

songList.each do |aSong|

aSong.play

end

The only difference between the for loop and the each form is the scope of local
variables that are defined in the body. This is discussed on page 82.

You can use for to iterate over any object that responds to the method each, such as
an Array or a Range.

for i in [’fee’, ’fi’, ’fo’, ’fum’]

print i, " "

end

for i in 1..3

print i, " "

end

for i in File.open("ordinal").find_all { |l| l =~ /d$/}

print i.chomp, " "

end

produces:
fee fi fo fum 1 2 3 second third

As long as your class defines a sensible eachmethod, you can use a for loop to traverse
it.

class Periods

def each

yield "Classical"

yield "Jazz"

yield "Rock"

end

end

periods = Periods.new

for genre in periods

print genre, " "

end

produces:
Classical Jazz Rock

Break, Redo, and Next
The loop control constructs break, redo, and next let you alter the normal flow
through a loop or iterator.

break terminates the immediately enclosing loop; control resumes at the statement
following the block. redo repeats the loop from the start, but without reevaluating the
condition or fetching the next element (in an iterator). next skips to the end of the loop,
effectively starting the next iteration.

LOOPS 81

while gets

next if /^\s*#/ # skip comments

break if /^END/ # stop at end

substitute stuff in backticks and try again

redo if gsub!(/`(.*?)`/) { eval($1) }

process line ...

end

produces:

-:2: warning: regex literal in condition

-:3: warning: regex literal in condition

These keywords can also be used with any of the iterator-based looping mechanisms:

i=0

loop do

i += 1

next if i < 3

print i

break if i > 4

end

produces:

345

Retry
The redo statement causes a loop to repeat the current iteration. Sometimes, though,
you need to wind the loop right back to the very beginning. The retry statement is
just the ticket. retry restarts any kind of iterator loop.

for i in 1..100

print "Now at #{i}. Restart? "

retry if gets =~ /^y/i

end

Running this interactively, you might see

Now at 1. Restart? n

Now at 2. Restart? y

Now at 1. Restart? n

. . .

retry will reevaluate any arguments to the iterator before restarting it. The online
Ruby documentation has the following example of a do-it-yourself until loop.

def doUntil(cond)

yield

retry unless cond

end

i = 0

doUntil(i > 3) {

print i, " "

i += 1

}

produces:

82 CHAPTER 7. EXPRESSIONS

0 1 2 3 4

Variable Scope and Loops
The while, until, and for loops are built into the language and do not introduce new
scope; previously existing locals can be used in the loop, and any new locals created
will be available afterward.

The blocks used by iterators (such as loop and each) are a little different. Normally,
the local variables created in these blocks are not accessible outside the block.

[1, 2, 3].each do |x|

y = x + 1

end

[x, y]

produces:
prog.rb:4: undefined local variable or method `x’

for #<Object:0x3a3a24> (NameError)

However, if at the time the block executes a local variable already exists with the same
name as that of a variable in the block, the existing local variable will be used in the
block. Its value will therefore be available after the block finishes. As the following
example shows, this applies both to normal variables in the block and to the block’s
parameters.

x = nil

y = nil

[1, 2, 3].each do |x|

y = x + 1

end

[x, y] → [3, 4]

Chapter 8

Exceptions,
Catch, and Throw

So far we’re been developing code in Pleasantville, a wonderful place where nothing
ever, ever goes wrong. Every library call succeeds, users never enter incorrect data, and
resources are plentiful and cheap. Well, that’s about to change. Welcome to the real
world!

In the real world, errors happen. Good programs (and programmers) anticipate them
and arrange to handle them gracefully. This isn’t always as easy as it might be. Often
the code that detects an error does not have the context to know what to do about it.
For example, attempting to open a file that doesn’t exist is acceptable in some circum-
stances and is a fatal error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The open method returns some specific
value to say it failed. This value is then propagated back through the layers of calling
routines until someone wants to take responsibility for it.

The problem with this approach is that managing all these error codes can be a pain.
If a function calls open, then read, and finally close, and each can return an error
indication, how can the function distinguish these error codes in the value it returns to
its caller?

To a large extent, exceptions solve this problem. Exceptions let you package up infor-
mation about an error into an object. That exception object is then propagated back
up the calling stack automatically until the runtime system finds code that explicitly
declares that it knows how to handle that type of exception.

The Exception Class
The package that contains the information about an exception is an object of class
Exception, or one of class Exception’s children. Ruby predefines a tidy hierarchy
of exceptions, shown in Figure 8.1 on the next page. As we’ll see later, this hierarchy
makes handling exceptions considerably easier.

When you need to raise an exception, you can use one of the built-in Exception

classes, or you can create one of your own. If you create your own, you might want

83

84 CHAPTER 8. EXCEPTIONS, CATCH, AND THROW

Figure 8.1. Ruby exception hierarchy

Exception

fatal (used internally by Ruby)
Interrupt

NoMemoryError

SignalException

ScriptError

LoadError

NameError

NotImplementedError

SyntaxError

StandardError

ArgumentError

FloatDomainError

IndexError

IOError

EOFError

LocalJumpError

RegexpError

RuntimeError

SecurityError

SystemCallError

system-dependent exceptions
SystemStackError

ThreadError

TypeError

ZeroDivisionError

SystemExit

to make it a subclass of StandardError or one of its children. If you don’t, your
exception won’t be caught by default.

Every Exception has associated with it a message string and a stack backtrace. If you
define your own exceptions, you can add additional information.

Handling Exceptions
Our jukebox downloads songs from the Internet using a TCP socket. The basic code is
simple:

opFile = File.open(opName, "w")

while data = socket.read(512)

opFile.write(data)

end

What happens if we get a fatal error halfway through the download? We certainly don’t
want to store an incomplete song in the song list. “I Did It My *click*”.

HANDLING EXCEPTIONS 85

Let’s add some exception handling code and see how it helps. We enclose the code that
could raise an exception in a begin/end block and use rescue clauses to tell Ruby
the types of exceptions we want to handle. In this case we’re interested in trapping
SystemCallError exceptions (and, by implication, any exceptions that are subclasses
of SystemCallError), so that’s what appears on the rescue line. In the error han-
dling block, we report the error, close and delete the output file, and then reraise the
exception.

opFile = File.open(opName, "w")

begin

Exceptions raised by this code will

be caught by the following rescue clause

while data = socket.read(512)

opFile.write(data)

end

rescue SystemCallError

$stderr.print "IO failed: " + $!

opFile.close

File.delete(opName)

raise

end

When an exception is raised, and independent of any subsequent exception handling,
Ruby places a reference to the Exception object associated with the exception in the
global variable $! (the exclamation point presumably mirroring our surprise that any of
our code could cause errors). In the previous example, we used this variable to format
our error message.

After closing and deleting the file, we call raise with no parameters, which reraises
the exception in $!. This is a useful technique, as it allows you to write code that
filters exceptions, passing on those you can’t handle to higher levels. It’s almost like
implementing an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can
specify multiple exceptions to catch. At the end of each rescue clause you can give
Ruby the name of a local variable to receive the matched exception. Many people find
this more readable than using $! all over the place.

begin

eval string

rescue SyntaxError, NameError => boom

print "String doesn’t compile: " + boom

rescue StandardError => bang

print "Error running script: " + bang

end

How does Ruby decide which rescue clause to execute? It turns out that the process-
ing is pretty similar to that used by the case statement. For each rescue clause in
the begin block, Ruby compares the raised exception against each of the parameters
in turn. If the raised exception matches a parameter, Ruby executes the body of the
rescue and stops looking. The match is made using $!.kind_of?(parameter), and
so will succeed if the parameter has the same class as the exception or is an ancestor

86 CHAPTER 8. EXCEPTIONS, CATCH, AND THROW

of the exception. If you write a rescue clause with no parameter list, the parameter
defaults to StandardError.

If no rescue clause matches, or if an exception is raised outside a begin/end block,
Ruby moves up the stack and looks for an exception handler in the caller, then in the
caller’s caller, and so on.

Although the parameters to the rescue clause are typically the names of Exception
classes, they can actually be arbitrary expressions (including method calls) that return
an Exception class.

Tidying Up
Sometimes you need to guarantee that some processing is done at the end of a block of
code, regardless of whether an exception was raised. For example, you may have a file
open on entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and con-
tains a chunk of code that will always be executed as the block terminates. It doesn’t
matter if the block exits normally, if it raises and rescues an exception, or if it is termi-
nated by an uncaught exception—the ensure block will get run.

f = File.open("testfile")

begin

.. process

rescue

.. handle error

ensure

f.close unless f.nil?

end

The else clause is a similar, although less useful, construct. If present, it goes after the
rescue clauses and before any ensure. The body of an else clause is executed only
if no exceptions are raised by the main body of code.

f = File.open("testfile")

begin

.. process

rescue

.. handle error

else

puts "Congratulations-- no errors!"

ensure

f.close unless f.nil?

end

Play It Again
Sometimes you may be able to correct the cause of an exception. In those cases, you
can use the retry statement within a rescue clause to repeat the entire begin/end
block. Clearly there is tremendous scope for infinite loops here, so this is a feature to
use with caution (and with a finger resting lightly on the interrupt key).

RAISING EXCEPTIONS 87

As an example of code that retries on exceptions, have a look at the following, adapted
from Minero Aoki’s net/smtp.rb library.

@esmtp = true

begin

First try an extended login. If it fails because the

server doesn’t support it, fall back to a normal login

if @esmtp then

@command.ehlo(helodom)

else

@command.helo(helodom)

end

rescue ProtocolError

if @esmtp then

@esmtp = false

retry

else

raise

end

end

This code tries first to connect to an SMTP server using the EHLO command, which
is not universally supported. If the connection attempt fails, the code sets the @esmtp

variable to false and retries the connection. If this fails again, the exception is reraised
up to the caller.

Raising Exceptions
So far we’ve been on the defensive, handling exceptions raised by others. It’s time to
turn the tables and go on the offensive. (There are those that say your gentle authors
are always offensive, but that’s a different book.)

You can raise exceptions in your code with the Kernel.raisemethod.

raise

raise "bad mp3 encoding"

raise InterfaceException, "Keyboard failure", caller

The first form simply reraises the current exception (or a RuntimeError if there is no
current exception). This is used in exception handlers that need to intercept an excep-
tion before passing it on.

The second form creates a new RuntimeError exception, setting its message to the
given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument and the stack trace to the third argument. Typically
the first argument will be either the name of a class in the Exception hierarchy or

88 CHAPTER 8. EXCEPTIONS, CATCH, AND THROW

a reference to an object instance of one of these classes.1 The stack trace is normally
produced using the Kernel.callermethod.

Here are some typical examples of raise in action.

raise

raise "Missing name" if name.nil?

if i >= myNames.size

raise IndexError, "#{i} >= size (#{myNames.size})"

end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is
often useful in library modules. We can take this further: the following code removes
two routines from the backtrace.

raise ArgumentError, "Name too big", caller[1..-1]

Adding Information to Exceptions
You can define your own exceptions to hold any information that you need to pass out
from the site of an error. For example, certain types of network errors might be transient
depending on the circumstances. If such an error occurs, and the circumstances are
right, you could set a flag in the exception to tell the handler that it might be worth
retrying the operation.

class RetryException < RuntimeError

attr :okToRetry

def initialize(okToRetry)

@okToRetry = okToRetry

end

end

Somewhere down in the depths of the code, a transient error occurs.

def readData(socket)

data = socket.read(512)

if data.nil?

raise RetryException.new(true), "transient read error"

end

.. normal processing

end

Higher up the call stack, we handle the exception.

begin

stuff = readData(socket)

.. process stuff

rescue RetryException => detail

retry if detail.okToRetry

raise

end

1. Technically, this argument can be any object that responds to the message exception by returning an
object such that object.kind_of?(Exception) is true.

CATCH AND THROW 89

Catch and Throw
While the exception mechanism of raise and rescue is great for abandoning execu-
tion when things go wrong, it’s sometimes nice to be able to jump out of some deeply
nested construct during normal processing. This is where catch and throw come in
handy.

catch (:done) do

while gets

throw :done unless fields = split(/\t/)

songList.add(Song.new(*fields))

end

songList.play

end

catch defines a block that is labeled with the given name (which may be a Symbol or
a String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch

block with a matching symbol. When it finds it, Ruby unwinds the stack to that point
and terminates the block. If the throw is called with the optional second parameter,
that value is returned as the value of the catch. So, in the previous example, if the
input does not contain correctly formatted lines, the throw will skip to the end of
the corresponding catch, not only terminating the while loop but also skipping the
playing of the song list.

The following example uses a throw to terminate interaction with the user if “!” is
typed in response to any prompt.

def promptAndGet(prompt)

print prompt

res = readline.chomp

throw :quitRequested if res == "!"

return res

end

catch :quitRequested do

name = promptAndGet("Name: ")

age = promptAndGet("Age: ")

sex = promptAndGet("Sex: ")

..

process information

end

As this example illustrates, the throw does not have to appear within the static scope
of the catch.

Chapter 9

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give
you two major benefits:

1. Modules provide a namespace and prevent name clashes.

2. Modules implement the mixin facility.

Namespaces
As you start to write bigger and bigger Ruby programs, you’ll naturally find your-
self producing chunks of reusable code—libraries of related routines that are generally
applicable. You’ll want to break this code out into separate files so the contents can be
shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set
of interrelated classes) into a file.

However, there are times when you want to group things together that don’t naturally
form a class.

An initial approach might be to put all these things into a file and simply load that file
into any program that needs it. This is the way the C language works. However, there’s
a problem. Say you write a set of trigonometry functions sin, cos, and so on. You
stuff them all into a file, trig.rb, for future generations to enjoy. Meanwhile, Sally is
working on a simulation of good and evil, and codes up a set of her own useful routines,
including beGood and sin, and sticks them into action.rb. Joe, who wants to write
a program to find out how many angels can dance on the head of a pin, needs to load
both trig.rb and action.rb into his program. But both define a method called sin.
Bad news.

The answer is the module mechanism. Modules define a namespace, a sandbox in
which your methods and constants can play without having to worry about being
stepped on by other methods and constants. The trig functions can go into one module:

module Trig

PI = 3.141592654

def Trig.sin(x)

91

92 CHAPTER 9. MODULES

..

end

def Trig.cos(x)

..

end

end

and the good and bad action methods can go into another:

module Action

VERY_BAD = 0

BAD = 1

def Action.sin(badness)

...

end

end

Module constants are named just like class constants, with an initial uppercase letter.
The method definitions look similar, too: these module methods are defined just like
class methods.

If a third program wants to use these modules, it can simply load up the two files (using
the Ruby require statement, which we discuss on page 96) and reference the qualified
names.

require "trig"

require "action"

y = Trig.sin(Trig::PI/4)

wrongdoing = Action.sin(Action::VERY_BAD)

As with class methods, you call a module method by preceding its name with the mod-
ule’s name and a period, and you reference a constant using the module name and two
colons.

Mixins

Modules have another, wonderful use. At a stroke, they pretty much eliminate the need
for multiple inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought might well be “what happens if I define instance methods within a module?”
Good question. A module can’t have instances, because a module isn’t a class. How-
ever, you can include a module within a class definition. When this happens, all the
module’s instance methods are suddenly available as methods in the class as well. They
get mixed in. In fact, mixed-in modules effectively behave as superclasses.

MIXINS 93

module Debug

def whoAmI?

"#{self.class.name} (\##{self.id}): #{self.to_s}"

end

end

class Phonograph

include Debug

...

end

class EightTrack

include Debug

...

end

ph = Phonograph.new("West End Blues")

et = EightTrack.new("Surrealistic Pillow")

ph.whoAmI? → "Phonograph (#1877056): West End Blues"

et.whoAmI? → "EightTrack (#1877036): Surrealistic Pillow"

By including the Debug module, both Phonograph and EightTrack gain access to
the whoAmI? instance method.

A couple of points about the include statement before we go on. First, it has nothing
to do with files. C programmers use a preprocessor directive called #include to insert
the contents of one file into another during compilation. The Ruby include statement
simply makes a reference to a named module. If that module is in a separate file, you
must use require to drag that file in before using include. Second, a Ruby include

does not simply copy the module’s instance methods into the class. Instead, it makes a
reference from the class to the included module. If multiple classes include that module,
they’ll all point to the same thing. If you change the definition of a method within a
module, even while your program is running, all classes that include that module will
exhibit the new behavior.1

Mixins give you a wonderfully controlled way of adding functionality to classes. How-
ever, their true power comes out when the code in the mixin starts to interact with code
in the class that uses it. Let’s take the standard Ruby mixin Comparable as an exam-
ple. The Comparable mixin can be used to add the comparison operators (<, <=, ==,
>=, and >), as well as the method between?, to a class. For this to work, Comparable
assumes that any class that uses it defines the operator <=>. So, as a class writer, you
define the one method, <=>, include Comparable, and get six comparison functions
for free. Let’s try this with our Song class, by making the songs comparable based on
their duration. All we have to do is include the Comparable module and implement
the comparison operator <=>.

class Song

include Comparable

def <=>(other)

self.duration <=> other.duration

end

end

1. Of course, we’re speaking only of methods here. Instance variables are always per-object, for example.

94 CHAPTER 9. MODULES

We can check that the results are sensible with a few test songs.

song1 = Song.new("My Way", "Sinatra", 225)

song2 = Song.new("Bicylops", "Fleck", 260)

song1 <=> song2 → -1

song1 < song2 → true

song1 == song1 → true

song1 > song2 → false

Finally, back on page 40 we showed an implementation of Smalltalk’s inject func-
tion, implementing it within class Array. We promised then that we’d make it more
generally applicable. What better way than making it a mixin module?

module Inject

def inject(n)

each do |value|

n = yield(n, value)

end

n

end

def sum(initial = 0)

inject(initial) { |n, value| n + value }

end

def product(initial = 1)

inject(initial) { |n, value| n * value }

end

end

We can then test this by mixing it into some built-in classes.

class Array

include Inject

end

[1, 2, 3, 4, 5].sum → 15

[1, 2, 3, 4, 5].product → 120

class Range

include Inject

end

(1..5).sum → 15

(1..5).product → 120

(’a’..’m’).sum("Letters: ") → "Letters: abcdefghijklm"

For a more extensive example of a mixin, have a look at the documentation for the
Enumerablemodule, which starts on page 369.

Instance Variables in Mixins
People coming to Ruby from C++ often ask us, “What happens to instance variables
in a mixin? In C++, I have to jump through some hoops to control how variables are
shared in a multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question, we tell them. Remember how instance
variables work in Ruby: the first mention of an “@”-prefixed variable creates the
instance variable in the current object, self.

MIXINS 95

For a mixin, this means that the module that you mix into your client class (the mixee?)
may create instance variables in the client object and may use attr and friends to
define accessors for these instance variables. For instance:

module Notes

attr :concertA

def tuning(amt)

@concertA = 440.0 + amt

end

end

class Trumpet

include Notes

def initialize(tune)

tuning(tune)

puts "Instance method returns #{concertA}"

puts "Instance variable is #{@concertA}"

end

end

The piano is a little flat, so we’ll match it

Trumpet.new(-5.3)

produces:

Instance method returns 434.7

Instance variable is 434.7

Not only do we have access to the methods defined in the mixin, but we get access to
the necessary instance variables as well. There’s a risk here, of course, that different
mixins may use an instance variable with the same name and create a collision:

module MajorScales

def majorNum

@numNotes = 7 if @numNotes.nil?

@numNotes # Return 7

end

end

module PentatonicScales

def pentaNum

@numNotes = 5 if @numNotes.nil?

@numNotes # Return 5?

end

end

class ScaleDemo

include MajorScales

include PentatonicScales

def initialize

puts majorNum # Should be 7

puts pentaNum # Should be 5

end

end

ScaleDemo.new

produces:

7

7

96 CHAPTER 9. MODULES

The two bits of code that we mix in both use an instance variable named @numNotes.
Unfortunately, the result is probably not what the author intended.

For the most part, mixin modules don’t try to carry their own instance data around—
they use accessors to retrieve data from the client object. But if you need to create
a mixin that has to have its own state, ensure that the instance variables have unique
names to distinguish them from any other mixins in the system (perhaps by using the
module’s name as part of the variable name).

Iterators and the Enumerable Module
You’ve probably noticed that the Ruby collection classes support a large number of
operations that do various things with the collection: traverse it, sort it, and so on.
You may be thinking, “Gee, it’d sure be nice if my class could support all these neat-o
features, too!” (If you actually thought that, it’s probably time to stop watching reruns
of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins
and module Enumerable. All you have to do is write an iterator called each, which
returns the elements of your collection in turn. Mix in Enumerable, and suddenly your
class supports things such as map, include?, and find_all?. If the objects in your
collection implement meaningful ordering semantics using the <=> method, you’ll also
get min, max, and sort.

Including Other Files
Because Ruby makes it easy to write good, modular code, you’ll often find yourself
producing small files containing some chunk of self-contained functionality—an inter-
face to x, an algorithm to do y, and so on. Typically, you’ll organize these files as class
or module libraries.

Having produced these files, you’ll want to incorporate them into your new programs.
Ruby has two statements that do this.

load "filename.rb"

require "filename"

The load method includes the named Ruby source file every time the method is exe-
cuted, whereas require loads any given file only once. require has additional func-
tionality: it can load shared binary libraries. Both routines accept relative and absolute
paths. If given a relative path (or just a plain name), they’ll search every directory in
the current load path ($:, discussed on page 130) for the file.

Files loaded using load and require can, of course, include other files, which include
other files, and so on. What might not be obvious is that require is an executable
statement—it may be inside an if statement, or it may include a string that was just
built. The search path can be altered at runtime as well. Just add the directory you want
to the string $:.

INCLUDING OTHER FILES 97

Since load will include the source unconditionally, you can use it to reload a source
file that may have changed since the program began:

5.times do |i|

File.open("temp.rb","w") { |f|

f.puts "module Temp\ndef Temp.var() #{i}; end\nend"

}

load "temp.rb"

puts Temp.var

end

produces:
0

1

2

3

4

Chapter 10

Basic Input and Output

Ruby provides what at first sight looks like two separate sets of I/O routines. The first
is the simple interface—we’ve been using it pretty much exclusively so far.

print "Enter your name: "

name = gets

There are a whole set of I/O-related methods implemented in the Kernel module—
gets, open, print, printf, putc, puts, readline, readlines, and test—that
make it simple and convenient to write straightforward Ruby programs. These methods
typically do I/O to standard input and standard output, which makes them useful for
writing filters. You’ll find them documented starting on page 375.

The second way, which gives you a lot more control, is to use IO objects.

What Is an IO Object?
Ruby defines a single base class, IO, to handle input and output. This base class is
subclassed by classes File and BasicSocket to provide more specialized behavior,
but the principles are the same throughout. An IO object is a bidirectional channel
between a Ruby program and some external resource.1 There may be more to an IO

object than meets the eye, but in the end you still simply write to it and read from it.

In this chapter, we’ll be concentrating on class IO and its most commonly used subclass,
class File. For more details on using the socket classes for networking, see the section
beginning on page 427.

Opening and Closing Files
As you might expect, you can create a new file object using File.new.

1. For those who just have to know the implementation details, this means that a single IO object can
sometimes be managing more than one operating system file descriptor. For example, if you open a pair of
pipes, a single IO object contains both a read pipe and a write pipe.

99

100 CHAPTER 10. BASIC INPUT AND OUTPUT

aFile = File.new("testfile", "r")

... process the file

aFile.close

You can create a File object that is open for reading, writing, or both, according to
the mode string (here we opened “testfile” for reading with an “r”). The full list of
allowed modes appears on page 298. You can also optionally specify file permissions
when creating a file; see the description of File.new on page 277 for details. After
opening the file, we can work with it, writing and/or reading data as needed. Finally, as
responsible software citizens, we close the file, ensuring that all buffered data is written
and that all related resources are freed.

But here Ruby can make life a little bit easier for you. The method File.open also
opens a file. In regular use, it behaves just like File.new. However, if there’s a block
associated with the call, open behaves differently. Instead of returning a new File

object, it invokes the block, passing the newly opened File as a parameter. When the
block exits, the file is automatically closed.

File.open("testfile", "r") do |aFile|

... process the file

end

Reading and Writing Files
The same methods that we’ve been using for “simple” I/O are available for all file
objects. So, gets reads a line from standard input, and aFile.gets reads a line from
the file object aFile.

However, I/O objects enjoy an additional set of access methods, all intended to make
our lives easier.

Iterators for Reading
As well as using the usual loops to read data from an IO stream, you can also use
various Ruby iterators. IO#each_byte invokes a block with the next 8-bit byte from
the IO object (in this case, an object of type File).

aFile = File.new("testfile")

aFile.each_byte {|ch| putc ch; putc ?. }

produces:
T.h.i.s. .i.s. .l.i.n.e. .o.n.e.

.T.h.i.s. .i.s. .l.i.n.e. .t.w.o.

.T.h.i.s. .i.s. .l.i.n.e. .t.h.r.e.e.

.A.n.d. .s.o. .o.n.......

.

IO#each_line calls the block with the next line from the file. In the next example,
we’ll make the original newlines visible using String#dump, so you can see that we’re
not cheating.

READING AND WRITING FILES 101

aFile.each_line {|line| puts "Got #{line.dump}" }

produces:

Got "This is line one\n"

Got "This is line two\n"

Got "This is line three\n"

Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will
break up the input accordingly, returning the line ending at the end of each line of data.
That’s why you see the “\n” characters in the output of the previous example. In the
next example, we’ll use “e” as the line separator.

aFile.each_line("e") do |line|

puts "Got #{ line.dump }"

end

produces:

Got "This is line"

Got " one"

Got "\nThis is line"

Got " two\nThis is line"

Got " thre"

Got "e"

Got "\nAnd so on...\n"

If you combine the idea of an iterator with the auto-closing block feature, you get
IO.foreach. This method takes the name of an I/O source, opens it for reading, calls
the iterator once for every line in the file, and then closes the file automatically.

IO.foreach("testfile") { |line| puts line }

produces:

This is line one

This is line two

This is line three

And so on...

Or, if you prefer, you can retrieve an entire file into an array of lines:

arr = IO.readlines("testfile")

arr.length → 4

arr[0] → "This is line one\n"

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised
on most errors, and you should be ready to catch them and take appropriate action.

Writing to Files
So far, we’ve been merrily calling puts and print, passing in any old object and
trusting that Ruby will do the right thing (which, of course, it does). But what exactly
is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts
and print is converted to a string by calling that object’s to_s method. If for some

102 CHAPTER 10. BASIC INPUT AND OUTPUT

reason the to_s method doesn’t return a valid string, a string is created containing the
object’s class name and id, something like <ClassName:0x123456>.

The exceptions are simple, too. The nil object will print as the string “nil,” and an
array passed to puts will be written as if each of its elements in turn were passed
separately to puts.

What if you want to write binary data and don’t want Ruby messing with it? Well,
normally you can simply use IO#print and pass in a string containing the bytes to
be written. However, you can get at the low-level input and output routines if you
really want—have a look at the documentation for IO#sysread and IO#syswrite on
page 306.

And how do you get the binary data into a string in the first place? The two common
ways are to poke it in byte by byte or to use Array#pack.

str = "" → ""

str << 1 << 2 << 3 → "\001\002\003"

[4, 5, 6].pack("c*") → "\004\005\006"

But I Miss My C++ Iostream

Sometimes there’s just no accounting for taste. . .

However, just as you can append an object to an Array using the << operator, you can
also append an object to an output IO stream:

endl = "\n"

$stdout << 99 << " red balloons" << endl

produces:
99 red balloons

Again, the <<method uses to_s to convert its arguments to strings before sending them
on their merry way.

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set
of classes in the socket library (documented starting on page 427). These classes give
you access to TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional
socket types supported on your architecture. The library also provides helper classes to
make writing servers easier. Here’s a simple program that gets information about the
“oracle” user on our local machine using the finger protocol.

require ’socket’

client = TCPSocket.open(’localhost’, ’finger’)

client.send("oracle\n", 0) # 0 means standard packet

puts client.readlines

client.close

TALKING TO NETWORKS 103

At a higher level, the lib/net set of library modules provides handlers for a set of
application-level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are
documented starting on page 439. For example, the following program lists the images
that are displayed on the Pragmatic Programmer home page.

require ’net/http’

h = Net::HTTP.new(’www.pragmaticprogrammer.com’, 80)

resp, data = h.get(’/index.html’, nil)

if resp.message == "OK"

data.scan(/<img src="(.*?)"/) { |x| puts x }

end

Chapter 11

Threads and Processes

Ruby gives you two basic ways to organize your program so that you can run different
parts of it “at the same time.” You can split up cooperating tasks within the program,
using multiple threads, or you can split up tasks between different programs, using
multiple processes. Let’s look at each in turn.

Multithreading
Often the simplest way to do two things at once is by using Ruby threads. These
are totally in-process, implemented within the Ruby interpreter. That makes the Ruby
threads completely portable—there is no reliance on the operating system—but you
don’t get certain benefits from having native threads. You may experience thread star-
vation (that’s where a low-priority thread doesn’t get a chance to run). If you manage to
get your threads deadlocked, the whole process may grind to a halt. And if some thread
happens to make a call to the operating system that takes a long time to complete, all
threads will hang until the interpreter gets control back. However, don’t let these poten-
tial problems put you off—Ruby threads are a lightweight and efficient way to achieve
parallelism in your code.

Creating Ruby Threads
Creating a new thread is pretty straightforward. Here’s a simple code fragment that
downloads a set of Web pages in parallel. For each request it’s given, the code creates
a separate thread that handles the HTTP transaction.

require ’net/http’

pages = %w(www.rubycentral.com

www.awl.com

www.pragmaticprogrammer.com

)

threads = []

for page in pages

threads << Thread.new(page) { |myPage|

h = Net::HTTP.new(myPage, 80)

puts "Fetching: #{myPage}"

resp, data = h.get(’/’, nil)

105

106 CHAPTER 11. THREADS AND PROCESSES

puts "Got #{myPage}: #{resp.message}"

}

end

threads.each { |aThread| aThread.join }

produces:

Fetching: www.rubycentral.com

Fetching: www.awl.com

Fetching: www.pragmaticprogrammer.com

Got www.rubycentral.com: OK

Got www.pragmaticprogrammer.com: OK

Got www.awl.com: OK

Let’s look at this code in more detail, as there are a few subtle things going on.

New threads are created with the Thread.new call. It is given a block that contains
the code to be run in a new thread. In our case, the block uses the net/http library
to fetch the top page from each of our nominated sites. Our tracing clearly shows that
these fetches are going on in parallel.

When we create the thread, we pass the required HTML page in as a parameter. This
parameter is passed on to the block as myPage. Why do we do this, rather than simply
using the value of the variable page within the block?

A thread shares all global, instance, and local variables that are in existence at the time
the thread starts. As anyone with a kid brother can tell you, sharing isn’t always a good
thing. In this case, all three threads would share the variable page. The first thread gets
started, and page is set to www.rubycentral.com. In the meantime, the loop creating
the threads is still running. The second time around, page gets set to www.awl.com. If
the first thread has not yet finished using the page variable, it will suddenly start using
its new value. These bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—
each thread will have its own copy of these variables. In our case, the variable myPage
will be set at the time the thread is created, and each thread will have its own copy of
the page address.

Manipulating Threads

Another subtlety occurs on the last line in the program. Why do we call join on each
of the threads we created?

When a Ruby program terminates, all running threads are killed, regardless of their
states. However, you can wait for a particular thread to finish by calling that thread’s
Thread#join method. The calling thread will block until the given thread is finished.
By calling join on each of the requestor threads, you can make sure that all three
requests have completed before you terminate the main program.

In addition to join, there are a few other handy routines that are used to manipulate
threads. First of all, the current thread is always accessible using Thread.current.
You can obtain a list of all threads using Thread.list, which returns a list of all

www.rubycentral.com
www.awl.com

MULTITHREADING 107

Thread objects that are runnable or stopped. To determine the status of a particular
thread, you can use Thread#status and Thread#alive?.

Also, you can adjust the priority of a thread using Thread#priority= . Higher-priority
threads will run before lower-priority threads. We’ll talk more about thread scheduling,
and stopping and starting threads, in just a bit.

Thread Variables

As we described in the previous section, a thread can normally access any variables
that are in scope when the thread is created. Variables local to the block of a thread are
local to the thread, and are not shared.

But what if you need per-thread variables that can be accessed by other threads—
including the main thread? Thread features a special facility that allows thread-local
variables to be created and accessed by name. You simply treat the thread object as if
it were a Hash, writing to elements using []= and reading them back using []. In this
example, each thread records the current value of the variable count in a thread-local
variable with the key mycount. (There’s a race condition in this code, but we haven’t
talked about synchronization yet, so we’ll just quietly ignore it for now.)

count = 0

arr = []

10.times do |i|

arr[i] = Thread.new {

sleep(rand(0)/10.0)

Thread.current["mycount"] = count

count += 1

}

end

arr.each {|t| t.join; print t["mycount"], ", " }

puts "count = #{count}"

produces:
6, 1, 0, 8, 7, 9, 5, 4, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints out the value of count
captured by each. Just to make it more interesting, we have each thread wait a random
time before recording the value.

Threads and Exceptions
What happens if a thread raises an unhandled exception? It depends on the setting of
the abort_on_exception flag, documented on pages 352 and 355.

If abort_on_exception is false, the default condition, an unhandled exception sim-
ply kills the current thread—all the rest continue to run. In the following example,
thread number 3 blows up and fails to produce any output. However, you can still see
the trace from the other threads.

threads = []

6.times { |i|

threads << Thread.new(i) {

raise "Boom!" if i == 3

abort_on_exception

108 CHAPTER 11. THREADS AND PROCESSES

puts i

}

}

threads.each {|t| t.join }

produces:

01

2

45prog.rb:4: Boom! (RuntimeError)

from prog.rb:8:in `join’

from prog.rb:8

from prog.rb:8:in `each’

from prog.rb:8

However, set abort_on_exception to true, and an unhandled exception kills all
running threads. Once thread 3 dies, no more output is produced.

Thread.abort_on_exception = true

threads = []

6.times { |i|

threads << Thread.new(i) {

raise "Boom!" if i == 3

puts i

}

}

threads.each {|t| t.join }

produces:

01

2

prog.rb:5: Boom! (RuntimeError)

from prog.rb:4:in `initialize’

from prog.rb:4:in `new’

from prog.rb:4

from prog.rb:3:in `times’

from prog.rb:3

Controlling the Thread Scheduler
In a well-designed application, you’ll normally just let threads do their thing; building
timing dependencies into a multithreaded application is generally considered to be bad
form.

However, there are times when you need to control threads. Perhaps the jukebox has a
thread that displays a light show. We might need to stop it temporarily when the music
stops. You might have two threads in a classic producer-consumer relationship, where
the consumer has to pause if the producer gets backlogged.

Class Thread provides a number of methods to control the thread scheduler. Invoking
Thread.stop stops the current thread, while Thread#run arranges for a particular
thread to be run. Thread.pass deschedules the current thread, allowing others to run,

MUTUAL EXCLUSION 109

and Thread#join and Thread#value suspend the calling thread until a given thread
finishes.

We can demonstrate these features in the following, totally pointless program.

t = Thread.new { sleep .1; Thread.pass; Thread.stop; }

t.status → "sleep"

t.run

t.status → "run"

t.run

t.status → false

However, using these primitives to achieve any kind of real synchronization is, at best,
hit or miss; there will always be race conditions waiting to bite you. And when you’re
working with shared data, race conditions pretty much guarantee long and frustrating
debugging sessions. Fortunately, threads have one additional facility—the idea of a
critical section. Using this, we can build a number of secure synchronization schemes.

Mutual Exclusion
The lowest-level method of blocking other threads from running uses a global “thread
critical” condition. When the condition is set to true (using the Thread.critical=
method), the scheduler will not schedule any existing thread to run. However, this does
not block new threads from being created and run. Certain thread operations (such as
stopping or killing a thread, sleeping in the current thread, or raising an exception) may
cause a thread to be scheduled even when in a critical section.

Using Thread.critical= directly is certainly possible, but it isn’t terribly conven-
ient. Fortunately, Ruby comes packaged with several alternatives. Of these, two of the
best, class Mutex and class ConditionVariable, are available in the thread library
module; see the documentation beginning on page 417.

The Mutex Class

Mutex is a class that implements a simple semaphore lock for mutually exclusive access
to some shared resource. That is, only one thread may hold the lock at a given time.
Other threads may choose to wait in line for the lock to become available, or may
simply choose to get an immediate error indicating that the lock is not available.

A mutex is often used when updates to shared data need to be atomic. Say we need to
update two variables as part of a transaction. We can simulate this in a trivial program
by incrementing some counters. The updates are supposed to be atomic—the outside
world should never see the counters with different values. Without any kind of mutex
control, this just doesn’t work.

110 CHAPTER 11. THREADS AND PROCESSES

count1 = count2 = 0

difference = 0

counter = Thread.new do

loop do

count1 += 1

count2 += 1

end

end

spy = Thread.new do

loop do

difference += (count1 - count2).abs

end

end

sleep 1

Thread.critical = 1

count1 → 282838

count2 → 282838

difference → 148895

This example shows that the “spy” thread woke up a large number of times and found
the values of count1 and count2 inconsistent.

Fortunately we can fix this using a mutex.

require ’thread’

mutex = Mutex.new

count1 = count2 = 0

difference = 0

counter = Thread.new do

loop do

mutex.synchronize do

count1 += 1

count2 += 1

end

end

end

spy = Thread.new do

loop do

mutex.synchronize do

difference += (count1 - count2).abs

end

end

end

sleep 1

mutex.lock

count1 → 36032

count2 → 36032

difference → 0

By placing all accesses to the shared data under control of a mutex, we ensure consis-
tency. Unfortunately, as you can see from the numbers, we also suffer quite a perfor-
mance penalty.

MUTUAL EXCLUSION 111

Condition Variables

Using a mutex to protect critical data is sometimes not enough. Suppose you are in a
critical section, but you need to wait for some particular resource. If your thread goes
to sleep waiting for this resource, it is possible that no other thread will be able to
release the resource because it cannot enter the critical section—the original process
still has it locked. You need to be able to give up temporarily your exclusive use of the
critical region and simultaneously tell people that you’re waiting for a resource. When
the resource becomes available, you need to be able to grab it and reobtain the lock on
the critical region, all in one step.

This is where condition variables come in. A condition variable is simply a semaphore
that is associated with a resource and is used within the protection of a particular mutex.
When you need a resource that’s unavailable, you wait on a condition variable. That
action releases the lock on the corresponding mutex. When some other thread signals
that the resource is available, the original thread comes off the wait and simultaneously
regains the lock on the critical region.

require ’thread’

mutex = Mutex.new

cv = ConditionVariable.new

a = Thread.new {

mutex.synchronize {

puts "A: I have critical section, but will wait for cv"

cv.wait(mutex)

puts "A: I have critical section again! I rule!"

}

}

puts "(Later, back at the ranch...)"

b = Thread.new {

mutex.synchronize {

puts "B: Now I am critical, but am done with cv"

cv.signal

puts "B: I am still critical, finishing up"

}

}

a.join

b.join

produces:

A: I have critical section, but will wait for cv(Later, back at the ranch...)

B: Now I am critical, but am done with cv

B: I am still critical, finishing up

A: I have critical section again! I rule!

For alternative implementations of synchronization mechanisms, see monitor.rb and
sync.rb in the lib subdirectory of the distribution.

112 CHAPTER 11. THREADS AND PROCESSES

Running Multiple Processes
Sometimes you may want to split a task into several process-sized chunks—or perhaps
you need to run a separate process that was not written in Ruby. Not a problem: Ruby
has a number of methods by which you may spawn and manage separate processes.

Spawning New Processes
There are several ways to spawn a separate process; the easiest is to run some command
and wait for it to complete. You might find yourself doing this to run some separate
command or retrieve data from the host system. Ruby does this for you with the system
and backquote methods.

system("tar xzf test.tgz") → tar (child): test.tgz: Cannot open:

No such file or directory\ntar

(child): Error is not recoverable:

exiting now\ntar: Child returned

status 2\ntar: Error exit delayed

from previous errors\nfalse

result = `date`

result → "Thu Dec 26 20:04:37 MSK 2002\n"

The method Kernel.system executes the given command in a subprocess; it returns
true if the command was found and executed properly, false otherwise. In case of
failure, you’ll find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same
destination as your program’s output, which may not be what you want. To capture the
standard output of a subprocess, you can use the backquotes, as with `date` in the
previous example. Remember that you may need to use String#chomp to remove the
line-ending characters from the result.

Okay, this is fine for simple cases—we can run some other process and get the return
status. But many times we need a bit more control than that. We’d like to carry on a
conversation with the subprocess, possibly sending it data and possibly getting some
back. The method IO.popen does just this. The popen method runs a command as
a subprocess and connects that subprocess’s standard input and standard output to a
Ruby IO object. Write to the IO object, and the subprocess can read it on standard
input. Whatever the subprocess writes is available in the Ruby program by reading
from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that
reads words from standard input and prints them in pig Latin (or igpay atinlay). We can
use this when our Ruby programs need to send us output that our 5-year-olds shouldn’t
be able to understand.

pig = IO.popen("pig", "w+")

pig.puts "ice cream after they go to bed"

pig.close_write

puts pig.gets

This example illustrates both the apparent simplicity and the real-world complexi-
ties involved in driving subprocesses through pipes. The code certainly looks simple

RUNNING MULTIPLE PROCESSES 113

enough: open the pipe, write a phrase, and read back the response. But it turns out that
the pig program doesn’t flush the output it writes. Our original attempt at this exam-
ple, which had a pig.puts followed by a pig.gets, hung forever. The pig program
processed our input, but its response was never written to the pipe. We had to insert
the pig.close_write line. This sends an end-of-file to pig’s standard input, and the
output we’re looking for gets flushed as pig terminates.

There’s one more twist to popen. If the command you pass it is a single minus sign
(“–”), popen will fork a new Ruby interpreter. Both this and the original interpreter
will continue running by returning from the popen. The original process will receive
an IO object back, while the child will receive nil.

pipe = IO.popen("-","w+")

if pipe

pipe.puts "Get a job!"

$stderr.puts "Child says ’#{pipe.gets.chomp}’"

else

$stderr.puts "Dad says ’#{gets.chomp}’"

puts "OK"

end

produces:
Dad says ’Get a job!’

Child says ’OK’

In addition to popen, the traditional Unix calls Kernel.fork, Kernel.exec, and
IO.pipe are available on platforms that support them. The file-naming convention
of many IO methods and Kernel.open will also spawn subprocesses if you put a “|”
as the first character of the filename (see the introduction to class IO on page 297 for
details). Note that you cannot create pipes using File.new; it’s just for files.

Independent Children
Sometimes we don’t need to be quite so hands-on: we’d like to give the subprocess its
assignment and then go on about our business. Some time later, we’ll check in with it
to see if it has finished. For instance, we might want to kick off a long-running external
sort.

exec("sort testfile > output.txt") if fork == nil

The sort is now running in a child process

carry on processing in the main program

then wait for the sort to finish

Process.wait

The call to Kernel.fork returns a process id in the parent, and nil in the child, so the
child process will perform the Kernel.exec call and run sort. Sometime later, we issue
a Process.wait call, which waits for the sort to complete (and returns its process id).

If you’d rather be notified when a child exits (instead of just waiting around), you can
set up a signal handler using Kernel.trap (described on page 389). Here we set up a
trap on SIGCLD, which is the signal sent on “death of child process.”

trap("CLD") {

pid = Process.wait

114 CHAPTER 11. THREADS AND PROCESSES

puts "Child pid #{pid}: terminated"

exit

}

exec("sort testfile > output.txt") if fork == nil

do other stuff...

produces:
Child pid 27029: terminated

Blocks and Subprocesses
IO.popen works with a block in pretty much the same way as File.open does. Pass
popen a command, such as date, and the block will be passed an IO object as a param-
eter.

IO.popen ("date") { |f| puts "Date is #{f.gets}" }

produces:
Date is Thu Dec 26 20:04:38 MSK 2002

The IO object will be closed automatically when the code block exits, just as it is with
File.open.

If you associate a block with Kernel.fork, the code in the block will be run in a Ruby
subprocess, and the parent will continue after the block.

fork do

puts "In child, pid = #$$"

exit 99

end

pid = Process.wait

puts "Child terminated, pid = #{pid}, exit code = #{$? >> 8}"

produces:
In child, pid = 27036

Child terminated, pid = 27036, exit code = 99

One last thing. Why do we shift the exit code in $? 8 bits to the right before displaying
it? This is a “feature” of Posix systems: the bottom 8 bits of an exit code contain the
reason the program terminated, while the higher-order 8 bits hold the actual exit code.

Chapter 12

When Trouble Strikes

Sad to say, it is possible to write buggy programs using Ruby. Sorry about that.

But not to worry! Ruby has several features that will help debug your programs. We’ll
look at these features, and then we’ll show some common mistakes you can make in
Ruby and how to fix them.

Ruby Debugger
Ruby comes with a debugger, which is conveniently built into the base system. You can
run the debugger by invoking the interpreter with the -r debug option, along with any
other Ruby options and the name of your script:

ruby -r debug [options] [programfile] [arguments]

The debugger supports the usual range of features you’d expect, including the ability
to set breakpoints, to step into and step over method calls, and to display stack frames
and variables.

It can also list the instance methods defined for a particular object or class, and allows
you to list and control separate threads within Ruby. Table 12.1 on page 122 lists all of
the commands that are available under the debugger.

If your Ruby has readline support enabled, you can use cursor keys to move back
and forth in command history and use line editing commands to amend previous input.

To give you an idea of what the Ruby debugger is like, here is a sample session.

% ruby -rdebug t.rb
Debug.rb

Emacs support available.

t.rb:1:def fact(n)

(rdb:1) list 1-9
[1, 10] in t.rb

=> 1 def fact(n)

2 if n <= 0

3 1

4 else

5 n * fact(n-1)

6 end

115

116 CHAPTER 12. WHEN TROUBLE STRIKES

7 end

8

9 p fact(5)

(rdb:1) b 2
Set breakpoint 1 at t.rb:2

(rdb:1) c
breakpoint 1, fact at t.rb:2

t.rb:2: if n <= 0

(rdb:1) disp n
1: n = 5

(rdb:1) del 1
(rdb:1) watch n==1
Set watchpoint 2

(rdb:1) c
watchpoint 2, fact at t.rb:fact

t.rb:1:def fact(n)

1: n = 1

(rdb:1) where
--> #1 t.rb:1:in ‘fact’

#2 t.rb:5:in ‘fact’

#3 t.rb:5:in ‘fact’

#4 t.rb:5:in ‘fact’

#5 t.rb:5:in ‘fact’

#6 t.rb:9

(rdb:1) del 2
(rdb:1) c
120

Interactive Ruby
If you want to play with Ruby, there is a facility called Interactive Ruby—irb, for
short. irb is essentially a Ruby “shell” similar in concept to an operating system shell
(complete with job control). It provides an environment where you can “play around”
with the language in real time. You launch irb at the command prompt:

irb [irb-options] [ruby_script] [options]

irb will display the value of each expression as you complete it. For instance:

% irb

irb(main):001:0> a = 1 +
irb(main):002:0* 2 * 3 /
irb(main):003:0* 4 % 5
2

irb(main):004:0> 2+2
4

irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end
nil

irb(main):008:0> test
Hello, world!

nil

irb(main):009:0>

BUT IT DOESN’T WORK! 117

irb also allows you to create subsessions, each one of which may have its own context.
For example, you can create a subsession with the same (top-level) context as the orig-
inal session, or create a subsession in the context of a particular class or instance. The
sample session shown in Figure 12.1 on the following page is a bit longer, but shows
how you can create subsessions and switch between them.

For a full description of all the commands that irb supports, see the reference beginning
on page 471.

As with the debugger, if your version of Ruby was built with GNU Readline support,
you can use arrow keys (as with Emacs) or vi-style key bindings to edit individual lines
or to go back and reexecute or edit a previous line—just like a command shell.

irb is a great learning tool: it’s very handy if you want to try out an idea quickly and
see if it works.

Editor Support
Ruby is designed to read a program in one pass; this means you can pipe an entire
program to Ruby’s standard input and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs,
for instance, you can select a region of Ruby text and use the command Meta-| to
execute Ruby. The Ruby interpreter will use the selected region as standard input and
output will go to a buffer named “*Shell Command Output*.” This feature has come
in quite handy for us while writing this book—just select a few lines of Ruby in the
middle of a paragraph and try it out!

You can do something similar in the vi editor using “:!ruby” which replaces the pro-
gram text with its output, or “:w␣!ruby”, which displays the output without affecting
the buffer. Other editors have similar features.

While we are on the subject, this would probably be a good place to mention that there
is a Ruby mode for Emacs included in the distribution as misc/ruby-mode.el. There
are also several syntax-highlighting modules for vim (an enhanced version of the vi
editor), jed, and other editors available on the net as well. Check the Ruby FAQ for
current locations and availability.

But It Doesn’t Work!
So you’ve read through enough of the book, you start to write your very own Ruby
program, and it doesn’t work. Here’s a list of common gotchas and other tips.

• Attribute setter not being called. Within an object, Ruby will parse setter= as
an assignment to a local variable, not as a method call. Use self.setter= to
indicate the method call.

• A parse error at the last line of the source often indicates a missing end keyword.

• Make sure that the type of the object you are using is what you think it is. If in
doubt, use Object#class to check the type of an object.

118 CHAPTER 12. WHEN TROUBLE STRIKES

Figure 12.1. Sample irb session

In this same irb session,
we’ll create a new
subsession in the context
of class VolumeKnob.

We can use fg 0 to
switch back to the main
session, take at look at all
current jobs, and see what
instance methods
VolumeKnob defines.

Make a new VolumeKnob

object, and create a new
subsession with that
object as the context.

% irb
irb(main):001:0> irb
irb#1(main):001:0> jobs
#0->irb on main (#<Thread:0x401bd654>: stop)
#1->irb#1 on main (#<Thread:0x401d5a28>: running)
irb#1(main):002:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>
irb(main):002:0> class VolumeKnob
irb(main):003:1> end
nil
irb(main):004:0> irb VolumeKnob
irb#2(VolumeKnob):001:0> def initialize
irb#2(VolumeKnob):002:1> @vol=50
irb#2(VolumeKnob):003:1> end
nil
irb#2(VolumeKnob):004:0> def up
irb#2(VolumeKnob):005:1> @vol += 10
irb#2(VolumeKnob):006:1> end
nil
irb#2(VolumeKnob):007:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>
irb(main):005:0> jobs
#0->irb on main (#<Thread:0x401bd654>: running)
#1->irb#1 on main (#<Thread:0x401d5a28>: stop)
#2->irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)
irb(main):006:0> VolumeKnob.instance_methods
["up"] #
irb(main):007:0> v = VolumeKnob.new
#<VolumeKnob: @vol=50>
irb(main):008:0> irb v
irb#3(#<VolumeKnob:0x401e7d40>):001:0> up
60
irb#3(#<VolumeKnob:0x401e7d40>):002:0> up
70
irb#3(#<VolumeKnob:0x401e7d40>):003:0> up
80 #
irb#3(VolumeKnob):004:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>
irb(main):009:0> kill 1,2,3
[1, 2, 3]
irb(main):010:0> jobs
#0->irb on main (#<Thread:0x401bd654>: running)
irb(main):011:0> exit

Switch back to the main
session, kill the
subsessions, and exit.

BUT IT’S TOO SLOW! 119

• Make sure that your methods start with a lowercase letter and that classes and
constants start with an uppercase letter.

• If you happen to forget a “,” in an argument list—especially to print—you can
produce some very odd error messages.

• Block parameters are actually local variables. If an existing local of the same
name exists when the block executes, that variable will be modified by the call to
the block. This may or may not be a good thing.

• Watch out for precedence, especially when using {} instead of do/end.

• Make sure that the open parenthesis of a method’s parameter list butts up against
the end of the method name with no intervening spaces.

• Output written to a terminal may be buffered. This means that you may not see
a message you write immediately. In addition, if you write messages to both
$stdout and $stderr, the output may not appear in the order you were expect-
ing. Always use nonbuffered I/O (set sync=true) for debug messages.

• If numbers don’t come out right, perhaps they’re strings. Text read from a file will
be a String, and will not be automatically converted to a number by Ruby. A call
to to_i will work wonders. A common mistake Perl programmers make is:

while gets

num1, num2 = split /,/

...

end

• Unintended aliasing—if you are using an object as the key of a hash, make sure it
doesn’t change its hash value (or arrange to call Hash#rehash if it does).

• Use trace_var to watch when a variable changes value.

• Use the debugger.

• Use Object#freeze. If you suspect that some unknown portion of code is setting
a variable to a bogus value, try freezing the variable. The culprit will then be
caught during the attempt to modify the variable.

There’s one major technique that makes writing Ruby code both easier and more fun.
Develop your applications incrementally. Write a few lines of code, then run them.
Write a few more, then run those. One of the major benefits of an untyped language is
that things don’t have to be complete before you use them.

But It’s Too Slow!
Ruby is an interpreted, high-level language, and as such it may not perform as fast as
a lower-level language such as C. In this section, we’ll list some basic things you can
do to improve performance; also have a look in the index under Performance for other
pointers.

120 CHAPTER 12. WHEN TROUBLE STRIKES

Create Locals Outside Blocks
Try defining the variables used in a block before the block executes. When iterating
over a very large set of elements, you can improve execution speed somewhat by pre-
declaring any iterator variables. In the first example below, Ruby has to create new x

and y variables on each iteration, but in the second version it doesn’t. We’ll use the
benchmark package from the Ruby Application Archive to compare the loops:

require "benchmark"

include Benchmark

n = 1000000

bm(12) do |test|

test.report("normal:") do

n.times do |x|

y = x + 1

end

end

test.report("predefine:") do

x = y = 0

n.times do |x|

y = x + 1

end

end

end

produces:
user system total real

normal: 1.430000 0.040000 1.470000 (1.459982)

predefine: 1.280000 0.030000 1.310000 (1.323131)

Use the Profiler
Ruby comes with a code profiler (documentation begins on on page 414). In and of
itself, that isn’t too surprising, but when you realize that the profiler is written in just
about 50 lines of Ruby, that makes for a pretty impressive language.

You can add profiling to your code using the command-line option -r profile, or
from within the code using require "profile". For example:

require "profile"

class Peter

def initialize(amt)

@value = amt

end

def rob(amt)

@value -= amt

amt

end

end

class Paul

def initialize

@value = 0

end

def pay(amt)

@value += amt

amt

BUT IT’S TOO SLOW! 121

end

end

peter = Peter.new(1000)

paul = Paul.new

1000.times do

paul.pay(peter.rob(10))

end

Run this, and you’ll get something like the following.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

36.51 0.23 0.23 1000 0.23 0.26 Peter#rob

28.57 0.41 0.18 1 180.00 630.00 Integer#times

26.98 0.58 0.17 1000 0.17 0.19 Paul#pay

4.76 0.61 0.03 1000 0.03 0.03 Fixnum#-

3.17 0.63 0.02 1000 0.02 0.02 Fixnum#+

0.00 0.63 0.00 4 0.00 0.00 Module#method_added

0.00 0.63 0.00 2 0.00 0.00 Class#allocate

0.00 0.63 0.00 1 0.00 0.00 Paul#initialize

0.00 0.63 0.00 2 0.00 0.00 Class#inherited

0.00 0.63 0.00 1 0.00 0.00 Peter#initialize

0.00 0.63 0.00 1 0.00 630.00 #toplevel

0.00 0.63 0.00 2 0.00 0.00 String#allocate

0.00 0.63 0.00 2 0.00 0.00 Class#new

With the profiler, you can quickly identify and fix bottlenecks. Remember to check
the code without the profiler afterward, though—sometimes the slowdown the profiler
introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the
programmer of the need to apply common sense: creating unnecessary objects, per-
forming unneeded work, and creating generally bloated code are wasteful in any lan-
guage.

122 CHAPTER 12. WHEN TROUBLE STRIKES

Table 12.1. Debugger commands

b [reak] [file:]line Set breakpoint at given line in file (default current file).
b [reak] [file:]name Set breakpoint at method in file.
b [reak] Display breakpoints and watchpoints.
wat [ch] expr Break when expression becomes true.
del [ete] [nnn] Delete breakpoint nnn (default all).

disp [lay] expr Display value of nnn every time debugger gets control.
disp [lay] Show current displays.
undisp [lay] [nnn] Remove display (default all).

c [ont] Continue execution.
s [tep] nnn=1 Execute next nnn lines, stepping into methods.
n [ext] nnn=1 Execute next nnn lines, stepping over methods.
fi [nish] Finish execution of the current function.
q [uit] Exit the debugger.

w [here] Display current stack frame.
f [rame] Synonym for where.
l [ist] [start–end] List source lines from start to end.
up nnn=1 Move up nnn levels in the stack frame.
down nnn=1 Move down nnn levels in the stack frame.

v [ar] g [lobal] Display global variables.
v [ar] l [ocal] Display local variables.
v [ar] i [stance] obj Display instance variables of obj.
v [ar] c [onst] Name Display constants in class or module name.

m [ethod] i [nstance] obj Display instance methods of obj.
m [ethod] Name Display instance methods of the class or module name.

th [read] l [ist] List all threads.
th [read] [c[ur[rent]]] Display status of current thread.
th [read] [c[ur[rent]]] nnn Make thread nnn current and stop it.
th [read] stop nnn Make thread nnn current and stop it.
th [read] resume nnn Resume thread nnn.

[p] expr Evaluate expr in the current context. expr may include
assignment to variables and method invocations.

empty A null command repeats the last command.

Part II

Ruby in Its Setting

123

Chapter 13

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world.
In this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Win-
dows users will probably also want to look at platform-specific information beginning
on page 149.

Command-Line Arguments
“In the Beginning was the Command Line.”1 Regardless of the system in which Ruby is
deployed, whether it be a super high-end scientific graphics workstation or an embed-
ded PDA device, you’ve got to start the Ruby interpreter somehow, and that gives us
the opportunity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, option-
ally the name of a program to run, and optionally a set of arguments for that program.

ruby [options] [--] [programfile] [arguments]

The Ruby options are terminated by the first word on the command line that doesn’t
start with a hyphen, or by the special flag “--” (two hyphens).

If no filename is present on the command line, or if the filename is a single hyphen (-),
Ruby reads the program source from standard input.

Arguments for the program itself follow the program name. For example:

% ruby -w - "Hello World"

will enable warnings, read a program from standard input, and pass it the quoted string
"Hello World" as an argument.

1. Title of a marvelous essay by Neal Stephenson (available online at
http://www.spack.org/essays/commandline.html).

125

http://www.spack.org/essays/commandline.html

126 CHAPTER 13. RUBY AND ITS WORLD

Command-Line Options
-0[octal]

The number “0” flag specifies the record separator character (\0, if no digit fol-
lows). -00 indicates paragraph mode: records are separated by two successive
default record separator characters. -0777 reads the entire file at once (as it is an
illegal character). Sets $/.

-a Auto split mode when used with -n or -p; equivalent to executing $F = $_.split
at the top of each loop iteration.

-C directory

Changes working directory to directory before executing.

-c Checks syntax only; does not execute the program.

--copyright

Prints the copyright notice and exits.

-d, --debug

Sets $DEBUG to true. This can be used by your programs to enable additional trac-
ing.

-e ’command’

Executes command as one line of Ruby source. Several -e’s are allowed, and the
commands are treated as multiple lines in the same program. If programfile is
omitted when -e is present, execution stops after the -e commands have been
run.

-F pattern

Specifies the input field separator ($;) used as the default for split() (affects
-a).

-h, --help

Displays a short help screen.

-I directories

Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I options
may be present, and multiple directories may appear following each -I. Directo-
ries are separated by a “:” on Unix-like systems and by a “;” on DOS/Windows
systems.

-i [extension]

Edits ARGV files in place. For each file named in ARGV, anything you write to
standard output will be saved back as the contents of that file. A backup copy of
the file will be made if extension is supplied.

% ruby -pi.bak -e "gsub(/Perl/, ’Ruby’)" *.txt

-K kcode

Specifies the code set to be used. This option is useful mainly when Ruby is used
for Japanese-language processing. kcode may be one of: e, E for EUC; s, S for
SJIS; u, U for UTF-8; or a, A, n, N for ASCII.

COMMAND-LINE ARGUMENTS 127

-l Enables automatic line-ending processing; sets $\ to the value of $/ and chops
every input line automatically.

-n Assumes “while gets; ...; end” loop around your program. For example, a
simple grep command might be implemented as:

% ruby -n -e "print if /wombat/" *.txt

-p Places your program code within the loop “while gets; ...; print; end.”

% ruby -p -e "$_.downcase!" *.txt

-r library

requires the named library before executing.

-S Looks for the program file using RUBYPATH or PATH environment variable.

-s Any command line switches found after the program filename, but before any
filename arguments or before a --, are removed from ARGV and set to a global
variable named for the switch. In the following example, the effect of this would
be to set the variable $opt to “electric”.

% ruby -s prog -opt=electric ./mydata

-T[level]

Sets the safe level, which among other things enables tainting checks (see page
231). Sets $SAFE.

-v, --verbose

Enables verbose mode and print the version number. In verbose mode, compilation
warnings are printed. If no program filename appears on the command line, Ruby
exits.

--version

Displays the Ruby version number and exits.

-w Enables verbose mode. Unlike -v, reads program from standard input if no pro-
gram files are present on the command line. We recommend running your Ruby
programs with -w.

-X directory

Changes working directory to directory before executing. Same as -C directory.

-x [directory]

Strips off text before #!ruby line and changes working directory to directory if
given.

-y, --yydebug

Enables yacc debugging in the parser (waaay too much information).

ARGV
Any command-line arguments after the program filename are available to your Ruby
program in the global array ARGV. For instance, invoking Ruby as

% ruby -w ptest "Hello World" a1 1.6180

128 CHAPTER 13. RUBY AND ITS WORLD

yields an ARGV array containing ["Hello World", a1, 1.6180]. There’s a gotcha
here for all you C programmers—ARGV[0] is the first argument to the program, not the
program name. The name of the current program is available in the global variable $0.

Program Termination
The method Kernel#exit terminates your program, returning a status value to the
operating system. However, unlike some languages, exit doesn’t just terminate the
program immediately. Kernel#exit first raises a SystemExit exception, which you
may catch, and then performs a number of cleanup actions, including running any reg-
istered at_exit methods and object finalizers. See the reference for Kernel#exit
beginning on page 380 for details.

Environment Variables
You can access operating system environment variables using the predefined variable
ENV. It responds to the same methods as Hash.2

The values of some environment variables are read by Ruby when it first starts. These
variables modify the behavior of the interpreter, as shown in Table 13.1 on the next
page.

Writing to Environment Variables
A Ruby program may write to the ENV object, which on most systems changes the
values of the corresponding environment variables. However, this change is local to the
process that makes it and to any subsequently spawned child processes. This inheritance
of environment variables is illustrated in the code that follows. A subprocess changes an
environment variable and this change is seen in a process that it then starts. However,
the change is not visible to the original parent. (This just goes to prove that parents
never really know what their children are doing.)

puts "In parent, term = #{ENV[’TERM’]}"

fork do

puts "Start of child 1, term = #{ENV[’TERM’]}"

ENV[’TERM’] = "ansi"

fork do

puts "Start of child 2, term = #{ENV[’TERM’]}"

end

Process.wait

puts "End of child 1, term = #{ENV[’TERM’]}"

end

Process.wait

puts "Back in parent, term = #{ENV[’TERM’]}"

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

WHERE RUBY FINDS ITS MODULES 129

Table 13.1. Environment variables used by Ruby

Variable Name Description

RUBYOPT Additional command-line options to Ruby; examined after real
command-line options are parsed ($SAFE must be 0).

RUBYLIB Additional search path for Ruby programs ($SAFE must be 0).
RUBYPATH With -S option, search path for Ruby programs (defaults to

PATH).
RUBYSHELL Shell to use when spawning a process; if not set, will also check

SHELL or COMSPEC.
DLN_LIBRARY_PATH Search path for dynamically loaded modules.
RUBYLIB_PREFIX (Windows only) Mangle the RUBYLIB search path by adding

this prefix to each component.

produces:
In parent, term = xterm

Start of child 1, term = xterm

Start of child 2, term = ansi

End of child 1, term = ansi

Back in parent, term = xterm

Where Ruby Finds Its Modules
You use require or load to bring a library module into your Ruby program. Some
of these modules are supplied with Ruby, some you installed off the Ruby Application
Archive, and some you wrote yourself. How does Ruby find them?

When Ruby is built for your particular machine, it predefines a set of standard directo-
ries to hold library stuff. Where these are depends on the machine in question. You can
determine this from the command line with something like:

% ruby -e ’puts $:’

On a typical Linux box, you’ll probably find something such as:

/usr/local/lib/ruby/site_ruby/1.6/i686-linux

/usr/local/lib/ruby/site_ruby/1.6

/usr/local/lib/ruby/site_ruby

/usr/local/lib/ruby/1.6/i686-linux

/usr/local/lib/ruby/1.6

.

The site_ruby directories are intended to hold modules and extensions that you’ve
added. The architecture-dependent directories (i686-linux in this case) hold executa-
bles and other things specific to this particular machine. All these directories are auto-
matically included in Ruby’s search for modules.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby,
and you and your colleagues have built a substantial library of Ruby code. You want
everyone on the team to have access to all of this code. You have a couple of options to
accomplish this. If your program runs at a safe level of zero (see Chapter 20 beginning

130 CHAPTER 13. RUBY AND ITS WORLD

on page 231), you can set the environment variable RUBYLIB to a list of one or more
directories to be searched.3 If your program is not setuid, you can use the command-line
parameter -I to do the same thing.

Finally, the Ruby variable $: is an array of places to search for loaded files. This vari-
able is initialized to the list of standard directories, plus any additional ones you spec-
ified using RUBYLIB and -I. You can always add additional directories to this array
from within your running program.

Build Environment
When Ruby is compiled for a particular architecture, all of the relevant settings used to
build it (including the architecture of the machine on which it was compiled, compiler
options, source code directory, and so on) are written to the module Config within the
library file “rbconfig.rb”. After installation, any Ruby program can use this module
to get details on how Ruby was compiled.

require "rbconfig.rb"

include Config

CONFIG["host"] → "i586-alt-linux-gnu"

CONFIG["LDFLAGS"] → "-rdynamic"

Extension libraries use this configuration file in order to compile and link properly on
any given architecture. See Chapter 17 beginning on page 153, and the reference for
mkmf beginning on page 412 for details.

3. The separator between entries depends on your platform. For Windows, it’s a semicolon; for Unix, a
colon.

Chapter 14

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP
daemon, or Web server in Ruby, but you can also use Ruby for more usual tasks such
as CGI programming or as a replacement for PHP.

Writing CGI Scripts
You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate
HTML output, all you need is

#!/usr/bin/env ruby

print "HTTP/1.0 200 OK\r\n"

print "Content-type: text/html\r\n\r\n"

print "<html><body>Hello World!</body></html>\r\n"

You could use Ruby’s regular expression features to parse incoming query strings,
look up environment variables, check tags, substitute text into templates, escape special
characters, format up the HTML, and print it all out.

Or, you could use class CGI.

Using cgi.rb
Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,
cookies, and the environment, maintain stateful sessions, and so on. It’s documented in
full in the reference section beginning on page 452, but we’ll take a quick look at its
capabilities here.

Quoting
When dealing with URLs and HTML code, you must be careful to quote certain char-
acters. For instance, a slash character (“/ ”) has special meaning in a URL, so it must
be “escaped” if it’s not part of the path name. That is, any “/ ” in the query portion of
the URL will be translated to the string “%2F ” and must be translated back to a “/ ”
for you to use it. Space and ampersand are also special characters. To handle this, CGI
provides the routines CGI.escape and CGI.unescape:

131

132 CHAPTER 14. RUBY AND THE WEB

require ’cgi’

puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")

produces:
Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

Similarly, you may want to escape HTML special characters:

require ’cgi’

puts CGI.escapeHTML(’Click Here’)

produces:
Click Here

To get really fancy, you can decide to escape only certain elements within a string:

require ’cgi’

puts CGI.escapeElement(’<hr>Click Here
’,’A’)

produces:
<hr>Click Here

Here only the “A” tag is escaped; other tags are left alone. Each of these methods has
an “un-” version to restore the original string.

Forms
Using class CGI gives you access to HTML query parameters in two ways. Suppose we
are given a URL of /cgi-bin/lookup?player=Miles%20Davis&year=1958. You
can access the parameters “player” and “year” using CGI#[] directly:

require ’cgi’

cgi = CGI.new

cgi[’player’] → ["Miles Davis"]

cgi[’year’] → ["1958"]

Or, you can retrieve all parameters as a Hash:

require ’cgi’

cgi = CGI.new

h = cgi.params

h[’player’] → ["Miles Davis"]

Creating Forms and HTML
CGI contains a huge number of methods used to create HTML—one method per tag.
In order to enable these methods, you must create a CGI object by calling CGI.new,
passing in the required level of HTML. For these examples, we’ll use “html3”.

To make tag nesting easier, these methods take their content as code blocks. The code
blocks should return a String, which will be used as the content for the tag. For this
example, we’ve added some gratuitous newlines to make the output fit on the page.

require "cgi"

cgi = CGI.new("html3") # add HTML generation methods

cgi.out{

cgi.html{

cgi.head{ "\n"+cgi.title{"This Is a Test"} } +

WRITING CGI SCRIPTS 133

cgi.body{ "\n"+

cgi.form{"\n"+

cgi.hr +

cgi.h1 { "A Form: " } + "\n"+

cgi.textarea("get_text") +"\n"+

cgi.br +

cgi.submit

}

}

}

}

produces:
Content-Type: text/html

Content-Length: 302

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><HTML><HEAD>

<TITLE>This Is a Test</TITLE></HEAD><BODY>

<FORM METHOD="post" ENCTYPE="application/x-www-form-urlencoded">

<HR><H1>A Form: </H1>

<TEXTAREA NAME="get_text" ROWS="10" COLS="70"></TEXTAREA>

<INPUT TYPE="submit"></FORM></BODY></HTML>

This code will produce an HTML form titled “This Is a Test,” followed by a horizontal
rule, a level-one header, a test input area, and finally a submit button. When the submit
comes back, you’ll have a CGI parameter named “get_text” containing the text the
user entered.

Cookies
You can store all kinds of interesting stuff on an unsuspecting surfer’s machine using
cookies. You can create a named cookie object and store a number of values in it. To
send it down to the browser, set a “cookie” header in the call to CGI#out.

require "cgi"

cookie = CGI::Cookie.new("rubyweb", "CustID=123", "Part=ABC");

cgi = CGI.new("html3")

cgi.out("cookie" => [cookie]){

cgi.html{

"\nHTML content here"

}

}

produces:
Content-Type: text/html

Content-Length: 86

Set-Cookie: rubyweb=CustID%3D123&Part%3DABC; path=

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><HTML>

HTML content here</HTML>

The next time the user comes back to this page, you can retrieve the cookie values for
CustID and Part, as shown in the HTML output.

require "cgi"

cgi = CGI.new("html3")

134 CHAPTER 14. RUBY AND THE WEB

cgi.out{

cgi.html{

cgi.pre{

cookie = cgi.cookies["rubyweb"]

"\nCookies are\n" + cookie.value.join("\n")

}

}

}

produces:
Content-Type: text/html

Content-Length: 111

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"><HTML><PRE>

Cookies are

CustID=123

Part=ABC</PRE></HTML>

Sessions
Cookies by themselves still need a bit of work to be useful. What we really want is a ses-
sion: a persistent state for some Web surfer. Sessions are handled with CGI::Session

(documented beginning on page 457), which uses cookies but provides a higher-level
abstraction.

require "cgi"

require "cgi/session"

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi, "session_key" => "rubyweb",

"session_id" => "9650",

"new_session" => true,

"prefix" => "web-session.")

sess["CustID"] = 123

sess["Part"] = "ABC"

cgi.out{

cgi.html{

"\nHTML content here"

}

}

This will send a cookie to the user named “rubyweb” with a value of 9650. It will also
create a disk file in $TMP/web-session.9650 with the key, value pairs for CustID
and Part.

When the user returns, all you need is a parameter to indicate the session id. In this
example, that would be rubyweb=9650. With that value in the parameters, you’ll be
able to retrieve the full set of saved session data.

require "cgi"

require "cgi/session"

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi, "session_key" => "rubyweb",

"prefix" => "web-session.")

cgi.out{

EMBEDDING RUBY IN HTML 135

cgi.html{

"\nCustomer #{sess[’CustID’]} orders an #{sess[’Part’]}"

}

}

Embedding Ruby in HTML
So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out; we can actually embed Ruby in an HTML document.

There are a number of packages that allow you to embed Ruby statements in some
other sort of a document, especially in an HTML page. Generically, this is known as
“eRuby.” Specifically, there are several different implementations of eRuby, including
eruby and erb. The remainder of this section will discuss eruby, written by Shugo
Maeda.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equiv-
alent of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using eruby
eruby acts as a filter, plain and simple. Any text within the input file is passed through
untouched, with the following exceptions:

Expression Description

<% ruby code %> The Ruby code between the delimiters is replaced with its
output.

<%= ruby expression %> The Ruby expression between the delimiters is replaced with
its value.

<%# ruby code %> The Ruby code between the delimiters is ignored (useful for
testing).

You invoke eruby as:

eruby [options] [document]

If the document is omitted, eruby will read from standard input. The command-line
options for eruby are shown in Table 14.1 on the next page.

Let’s look at some simple examples. We’ll run the eruby executable on the following
input.

This text is <% a = 100; puts "#{a}% Live!" %>

eruby substitutes the expression between the delimiters and produces

This text is 100% Live!

Using the <%= form acts as if you printed the value of the expression. For instance, the
input

<%a = 100%>This text is almost <%=a%> degrees! Cool!

136 CHAPTER 14. RUBY AND THE WEB

Table 14.1. Command-line options for eruby

Option Description

-d, --debug Sets $DEBUG to true.
-Kkcode Specifies an alternate coding system (see page 126).
-Mmode Specifies runtime mode, one of:

f filter mode
c CGI mode (prints errors as HTML, sets $SAFE=1)
n NPH-CGI mode (prints extra HTTP headers, sets $SAFE=1)

-n, --noheader Disables CGI header output.
-v, --verbose Enables verbose mode.
--version Prints version information and exits.

replaces the =a with the value of a.

This text is almost 100 degrees! Cool!

And, of course, you can embed Ruby within a more complex document type, such as
HTML.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>eruby example</title>

</head>

<body>

<h1>Enumeration</h1>

<%(1..10).each do|i|%>

number <%=i%>

<%end%>

<h1>Environment variables</h1>

<table>

<%ENV.keys.sort.each do |key|%>

<tr>

<th><%=key%></th><td><%=ENV[key]%></td>

</tr>

<%end%>

</table>

</body>

</html>

Installing eruby in Apache
You can set up an Apache Web server to automatically parse Ruby-embedded docu-
ments using eRuby, much in the same way that PHP does. You create Ruby-embedded
files with an “.rhtml” suffix and configure the Web server to run the eruby executable
on these documents to produce the desired HTML output.

In order to use eruby with the Apache Web server, you need to perform the following
steps.

IMPROVING PERFORMANCE 137

• Copy the eruby binary to the cgi-bin directory.

• Add the following two lines to httpd.conf:

AddType application/x-httpd-eruby .rhtml

Action application/x-httpd-eruby /cgi-bin/eruby

• If desired, you can also add or replace the DirectoryIndex directive such that
it includes index.rhtml. This lets you use Ruby to create directory listings for
directories that do not contain an index.html. For instance, the following direc-
tive would cause the embedded Ruby script index.rhtml to be searched for and
served if neither index.html nor index.shtml existed in a directory.

DirectoryIndex index.html index.shtml index.rhtml

Of course, you could also simply use a site-wide Ruby script as well.

DirectoryIndex index.html index.shtml /cgi-bin/index.rb

And that’s it! You can now write HTML documents that contain embedded Ruby to
generate forms and content dynamically. Be sure to see also the Ruby CGI library,
which is documented beginning on page 452.

Improving Performance
You can use Ruby to write CGI programs for the Web, but, as with most CGI programs,
the default configuration has to start up a new copy of Ruby with every cgi-bin page
access. That’s expensive in terms of machine utilization and can be painfully slow
for Web surfers. The Apache Web server solves this problem by allowing loadable
modules.

Typically, these modules are dynamically loaded and become part of the running Web
server process—there is no need to spawn another interpreter over and over again to
service requests; the Web server is the interpreter.

And so we come to mod_ruby (available from the archives), an Apache module that
links a full Ruby interpreter into the Apache Web server itself. The READMEfile included
with mod_ruby provides details on how to compile and install it.

Once installed and configured, you can run Ruby scripts just like you could without
mod_ruby, except that now they will come up much faster.

Chapter 15

Ruby Tk

The Ruby Application Archive contains several extensions that provide Ruby with a
graphical user interface (GUI), including extensions for Tcl/Tk, GTK, OpenGL, and
others.

The Tk extension is bundled in the main distribution and works on both Unix and
Windows systems. To use it, you need to have Tk installed on your system. Tk is a
large system, and entire books have been written about it, so we won’t waste time or
resources by delving too deeply into Tk itself, but instead concentrate on how to access
Tk features from Ruby. You’ll need one of these reference books in order to use Tk with
Ruby effectively. The binding we use is closest to the Perl binding, so you probably
want to get a copy of Learning Perl/Tk [Wal99] or Perl/Tk Pocket Reference [Lid98].

Tk works along a composition model—that is, you start off by creating a container
widget (such as a TkFrame or TkRoot) and then create the widgets that populate it, such
as buttons or labels. When you are ready to start the GUI, you invoke Tk.mainloop.
The Tk engine then takes control of the program, displaying widgets and calling your
code in response to GUI events.

Simple Tk Application
A simple Tk application in Ruby might look something like this:

require ’tk’

root = TkRoot.new { title "Ex1" }

TkLabel.new(root) {

text ’Hello, World!’

pack { padx 15 ; pady 15; side ’left’ }

}

Tk.mainloop

Let’s look at the code a little more closely. After loading in the tk extension module,
we create a root-level frame using TkRoot.new. We then make a label widget as a child
of the root frame, setting several options for the label. Finally, we pack the root frame
and enter the main GUI event loop.

It’s a good habit to specify the root explicitly, but you could leave it out—along with
the extra options—and boil this down to a three-liner:

139

140 CHAPTER 15. RUBY TK

require ’tk’

TkLabel.new { text ’Hello, World!’ }

Tk.mainloop

That’s all there is to it! Armed with one of the Perl/Tk books we reference at the start of
this chapter, you can now produce all the sophisticated GUIs you need. But then again,
if you’d like to stick around for some more details, here they come.

Widgets
Creating widgets is easy. Take the name of the widget as given in the Tk documentation
and add a Tk to the front of it. For instance, the widgets Label, Button, and Entry
become the classes TkLabel, TkButton, and TkEntry. You create an instance of a
widget using new, just as you would any other object. If you don’t specify a parent for
a given widget, it will default to the root-level frame. We usually want to specify the
parent of a given widget, along with many other options—color, size, and so on. We
also need to be able to get information back from our widgets while our program is
running by setting up callbacks and sharing data.

Setting Widget Options
If you look at a Tk reference manual (the one written for Perl/Tk, for example), you’ll
notice that options for widgets are usually listed with a hyphen—as a command-line
option might be. In Perl/Tk, options are passed to a widget in a Hash. You can do that
in Ruby as well, but you can also pass options using a code block; the name of the
option is used as a method name within the block and arguments to the option appear
as arguments to the method call. Widgets take a parent as the first argument, followed
by an optional hash of options or the code block of options. Thus, the following two
forms are equivalent.

TkLabel.new(parent_widget) {

text ’Hello, World!’

pack(’padx’ => 5,

’pady’ => 5,

’side’ => ’left’)

}

or

TkLabel.new(parent_widget, text => ’Hello, World!’).pack(...)

One small caution when using the code block form: the scope of variables is not what
you think it is. The block is actually evaluated in the context of the widget’s object,
not the caller’s. This means that the caller’s instance variables will not be available in
the block, but local variables from the enclosing scope and globals (not that you ever
use those) will be. We’ll show option passing using both methods in the examples that
follow.

Distances (as in the padx and pady options in these examples) are assumed to be in
pixels, but may be specified in different units using one of the suffixes “c” (centimeter),
“i” (inch), “m” (millimeter), or “p” (point).

WIDGETS 141

Getting Widget Data

We can get information back from widgets with callbacks and by binding variables.

Callbacks are very easy to set up. The command option (shown in the TkButton call in
the example that follows) takes a Proc object, which will be called when the callback
fires. Here we use Kernel.proc to convert the {exit} block to a Proc.

TkButton.new(bottom) {

text "Ok"

command proc { p mycheck.value; exit }

pack(’side’=>’left’, ’padx’=>10, ’pady’=>10)

}

We can also bind a Ruby variable to a Tk widget’s value using a TkVariable proxy.
We show this in the following example. Notice how the TkCheckButton is set up;
the documentation says that the variable option takes a var reference as an argu-
ment. For this, we create a Tk variable reference using TkVariable.new. Accessing
mycheck.valuewill return the string “0” or “1” depending on whether the checkbox
is checked. You can use the same mechanism for anything that supports a var reference,
such as radio buttons and text fields.

mycheck = TkVariable.new

TkCheckButton.new(top) {

variable mycheck

pack(’padx’=>5, ’pady’=>5, ’side’ => ’left’)

}

Setting/Getting Options Dynamically

In addition to setting a widget’s options when it’s created, you can reconfigure a widget
while it’s running. Every widget supports the configure method, which takes a Hash
or a code block in the same manner as new. We can modify the first example to change
the label text in response to a button press:

lbl = TkLabel.new(top) { justify ’center’

text ’Hello, World!’;

pack(’padx’=>5, ’pady’=>5, ’side’ => ’top’) }

TkButton.new(top) {

text "Cancel"

command proc { lbl.configure(’text’=>"Goodbye, Cruel World!") }

pack(’side’=>’right’, ’padx’=>10, ’pady’=>10)

}

Now when the Cancel button is pressed, the text in the label will change immediately
from “Hello, World!” to “Goodbye, Cruel World!”

You can also query widgets for particular option values using cget:

142 CHAPTER 15. RUBY TK

require ’tk’

b = TkButton.new {

text "OK"

justify ’left’

border 5

}

b.cget(’text’) → "OK"

b.cget(’justify’) → "left"

b.cget(’border’) → 5

Sample Application

Here’s a slightly longer example, showing a genuine application—a “pig Latin” gen-
erator. Type in the phrase such as “Ruby rules,” and the “Pig It” button will instantly
translate it into pig Latin.

require ’tk’

class PigBox

def pig(word)

leadingCap = word =~ /^[A-Z]/

word.downcase!

res = case word

when /^[aeiouy]/

word+"way"

when /^([^aeiouy]+)(.*)/

$2+$1+"ay"

else

word

end

leadingCap ? res.capitalize : res

end

def showPig

@text.value = @text.value.split.collect{|w| pig(w)}.join(" ")

end

def initialize

ph = { ’padx’ => 10, ’pady’ => 10 } # common options

p = proc {showPig}

@text = TkVariable.new

root = TkRoot.new { title "Pig" }

top = TkFrame.new(root)

TkLabel.new(top) {text ’Enter Text:’ ; pack(ph) }

@entry = TkEntry.new(top, ’textvariable’ => @text)

@entry.pack(ph)

TkButton.new(top) {text ’Pig It’; command p; pack ph}

TkButton.new(top) {text ’Exit’; command {proc exit}; pack ph}

top.pack(’fill’=>’both’, ’side’ =>’top’)

end

end

PigBox.new

Tk.mainloop

BINDING EVENTS 143

Geometry Management

In the example code in this chapter, you’ll see references to the wid-
get method pack. That’s a very important call, as it turns out—leave it
off and you’ll never see the widget. pack is a command that tells the
geometry manager to place the widget according to constraints that
we specify. Geometry managers recognize three commands:

Command Placement Specification

pack Flexible, constraint-based placement
place Absolute position
grid Tabular (row/column) position

As pack is the most commonly used command, we’ll use it in our
examples.

Binding Events
Our widgets are exposed to the real world; they get clicked on, the mouse moves over
them, the user tabs into them; all these things, and more, generate events that we can
capture. You can create a binding from an event on a particular widget to a block of
code, using the widget’s bind method.

For instance, suppose we’ve created a button widget that displays an image. We’d like
the image to change when the user’s mouse is over the button.

image1 = TkPhotoImage.new { file "img1.gif" }

image2 = TkPhotoImage.new { file "img2.gif" }

b = TkButton.new(@root) {

image image1

command proc { doit }

}

b.bind("Enter") { b.configure(’image’=>image2) }

b.bind("Leave") { b.configure(’image’=>image1) }

First, we create two GIF image objects from files on disk, using TkPhotoImage. Next
we create a button (very cleverly named “b”), which displays the image image1. We
then bind the “Enter” event so that it dynamically changes the image displayed by the
button to image2, and the “Leave” event to revert back to image1.

This example shows the simple events “Enter” and “Leave.” But the named event given
as an argument to bind can be composed of several substrings, separated with dashes,
in the order modifier-modifier-type-detail. Modifiers are listed in the Tk reference and
include Button1, Control, Alt, Shift, and so on. Type is the name of the event
(taken from the X11 naming conventions) and includes events such as ButtonPress,
KeyPress, and Expose. Detail is either a number from 1 to 5 for buttons or a keysym
for keyboard input. For instance, a binding that will trigger on mouse release of button 1
while the control key is pressed could be specified as:

144 CHAPTER 15. RUBY TK

Control-Button1-ButtonRelease

or
Control-ButtonRelease-1

The event itself can contain certain fields such as the time of the event and the x and y

positions. bind can pass these items to the callback, using event field codes. These are
used like printf specifications. For instance, to get the x and y coordinates on a mouse
move, you’d specify the call to bind with three parameters. The second parameter is
the Proc for the callback, and the third parameter is the event field string.

canvas.bind("Motion", proc{|x, y| do_motion (x, y)}, "%x %y")

Canvas
Tk provides a Canvas widget with which you can draw and produce PostScript output.
Here’s a simple bit of code (adapted from the distribution) that will draw straight lines.
Clicking and holding button 1 will start a line, which will be “rubber-banded” as you
move the mouse around. When you release button 1, the line will be drawn in that
position. Pressing button 2 on the mouse will dump out a PostScript representation of
the drawing canvas, suitable for printing.

require ’tk’

class Draw

def do_press(x, y)

@start_x = x

@start_y = y

@current_line = TkcLine.new(@canvas, x, y, x, y)

end

def do_motion(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

end

end

def do_release(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

@current_line.fill ’black’

@current_line = nil

end

end

def initialize(parent)

@canvas = TkCanvas.new(parent)

@canvas.pack

@start_x = @start_y = 0

@canvas.bind("1", proc{|e| do_press(e.x, e.y)})

@canvas.bind("2", proc{ puts @canvas.postscript({}) })

@canvas.bind("B1-Motion", proc{|x, y| do_motion(x, y)}, "%x %y")

@canvas.bind("ButtonRelease-1",

proc{|x, y| do_release (x, y)}, "%x %y")

end

end

root = TkRoot.new{ title ’Canvas’ }

Draw.new(root)

SCROLLING 145

Tk.mainloop

A few mouse clicks, and you’ve got an instant masterpiece:

“We couldn’t find the artist, so we had to hang the picture. . . .”

Scrolling
Unless you plan on drawing very small pictures, the previous example may not be all
that useful. TkCanvas, TkListbox, and TkText can be set up to use scrollbars, so you
can work on a smaller subset of the “big picture.”

Communication between a scrollbar and a widget is bidirectional. Moving the scrollbar
means that the widget’s view has to change; but when the widget’s view is changed by
some other means, the scrollbar has to change as well to reflect the new position.

Since we haven’t done much with lists yet, our scrolling example will use a scrolling
list of text. In the following code fragment, we’ll start off by creating a plain old
TkListbox. Then, we’ll make a TkScrollbar. The scrollbar’s callback (set with
command) will call the list widget’s yview method, which will change the value of
the visible portion of the list in the y-direction.

After that callback is set up, we make the inverse association: when the list feels the
need to scroll, we’ll set the appropriate range in the scrollbar using TkScrollbar#set.
We’ll use this same fragment in a fully functional program in the next section.

list_w = TkListbox.new(frame, ’selectmode’ => ’single’)

scroll_bar = TkScrollbar.new(frame,

’command’ => proc { |*args| list_w.yview *args })

scroll_bar.pack(’side’ => ’left’, ’fill’ => ’y’)

list_w.yscrollcommand(proc { |first,last|

scroll_bar.set(first,last) })

Just One More Thing
We could go on about Tk for another few hundred pages, but that’s another book. The
following program is our final Tk example—a simple GIF image viewer. You can select
a GIF filename from the scrolling list, and a thumb nail version of the image will be
displayed. There are just a few more things we’d like to point out.

146 CHAPTER 15. RUBY TK

Have you ever seen an application that creates a “busy cursor” and then forgets to
reset it to normal? There’s a neat trick in Ruby that will prevent this from happening.
Remember how File.new uses a block to ensure that the file is closed after it is used?
We can do a similar thing with the method busy, as shown in the next example.

This program also demonstrates some simple TkListbox manipulations—adding ele-
ments to the list, setting up a callback on a mouse button release,1 and retrieving the
current selection.

So far, we’ve used TkPhotoImage to only display icons directly, but you can also
zoom, subsample, and show portions of images as well. Here we use the subsample
feature to scale down the image for viewing.

require ’tk’

def busy

begin

$root.cursor "watch" # Set a watch cursor

$root.update # Make sure it updates the screen

yield # Call the associated block

ensure

$root.cursor "" # Back to original

$root.update

end

end

$root = TkRoot.new {title ’Scroll List’}

frame = TkFrame.new($root)

list_w = TkListbox.new(frame, ’selectmode’ => ’single’)

scroll_bar = TkScrollbar.new(frame,

’command’ => proc { |*args| list_w.yview *args })

scroll_bar.pack(’side’ => ’left’, ’fill’ => ’y’)

list_w.yscrollcommand(proc { |first,last|

scroll_bar.set(first,last) })

list_w.pack(’side’=>’left’)

image_w = TkPhotoImage.new

TkLabel.new(frame, ’image’ => image_w).pack(’side’=>’left’)

frame.pack

list_contents = Dir["screenshots/gifs/*.gif"]

list_contents.each {|x|

list_w.insert(’end’,x) # Insert each file name into the list

}

list_w.bind("ButtonRelease-1") {

index = list_w.curselection[0]

busy {

tmp_img = TkPhotoImage.new(’file’=> list_contents[index])

scale = tmp_img.height / 100

scale = 1 if scale < 1

image_w.copy(tmp_img, ’subsample’ => [scale,scale])

tmp_img = nil # Be sure to remove it, the

1. You probably want the button release, not the press, as the widget gets selected on the button press.

TRANSLATING FROM PERL/TK DOCUMENTATION 147

GC.start # image may have been large

}

}

Tk.mainloop

Finally, a word about garbage collection—we happened to have a few very large GIF
files lying about2 while testing this code. We didn’t want to carry these huge images
around in memory any longer then necessary, so we set the image reference to nil and
call the garbage collector immediately to remove the trash.

Translating from Perl/Tk Documentation
That’s it, you’re on your own now. For the most part, you can easily translate the doc-
umentation given for Perl/Tk to Ruby. But there are a few exceptions; some methods
are not implemented, and there is undocumented extra functionality. Until a Ruby/Tk
book comes out, your best bet is to ask on the newsgroup or read the source code.

But in general, it’s pretty easy to see what’s going on. Remember that options may be
given as a hash, or in code block style, and the scope of the code block is within the
TkWidget being used, not your class instance.

Object Creation
Perl/Tk: $widget = $parent->Widget([option => value])

Ruby: widget = TkWidget.new(parent, option-hash)

widget = TkWidget.new(parent) { code block }

You may not need to save the returned value of the newly created widget, but it’s there
if you do. Don’t forget to pack a widget (or use one of the other geometry calls), or it
won’t show up.

Options
Perl/Tk: -background => color

Ruby: ’background’ => color

{ background color }

Remember that the code block scope is different.

Variable References
Perl/Tk: -textvariable => \$variable

-textvariable => varRef

Ruby: ref = TkVariable.new

’textvariable’ => ref

{ textvariable ref }

2. They were technical documents! Really!

148 CHAPTER 15. RUBY TK

Use TkVariable to attach a Ruby variable to a widget’s value. You can then use the
value accessors in TkVariable (TkVariable#value and TkVariable#value=) to
affect the contents of the widget directly.

Chapter 16

Ruby and Microsoft Windows

Ruby is written for POSIX environments, which means that it can take advantage of all
of the system calls and libraries that Unix programmers are familiar with.

But there are a number of features and extensions designed to make Ruby more useful
in a Microsoft Windows environment, too. In this chapter, we’ll look at these features
and share some secrets to using Ruby effectively under Windows.

Ruby Ports
Windows does not provide a POSIX environment by itself, so some sort of emula-
tion library is required in order to provide the necessary functions. There are several
ports of Ruby for Windows: the most commonly used one relies on the GNU Win32
environment, and is called the “cygwin32” port. The cygwin32 port works well with
extension libraries, and is available on the Web as a precompiled binary. Another port,
“mswin32,” does not rely on cygwin. It is currently available as source code only. The
remainder of this chapter will refer to the cygwin32 port.

Running Ruby Under Windows
There are two executables provided with the cygwin32 Ruby distribution: ruby.exe
and rubyw.exe.

ruby.exe is meant to be used at a command prompt (a DOS shell), just as in the Unix
version. For applications that read and write to the standard input and output, this is fine.
But that also means that anytime you run ruby.exe, you’ll get a DOS shell even if you
don’t want one—Windows will create a new command prompt window and display it
while Ruby is running. This might not be appropriate behavior if, for example, you
double-click on a Ruby script that uses a graphical interface (such as Tk), or if you are
running a Ruby script as a background task, or from inside another program.

In these cases, you’ll want to use rubyw.exe. It is the same as ruby.exe except that
it does not provide standard in, standard out, or standard error, and does not launch a
DOS shell when run.

149

150 CHAPTER 16. RUBY AND MICROSOFT WINDOWS

You can set a file association1 so that files with the extension “.rb” will automatically
use rubyw.exe. By doing this, you can double-click on Ruby scripts and they will
simply run without popping up a DOS shell.

Win32API
If you plan on doing Ruby programming that needs to access some Windows 32 API
functions directly, or to use the entry points in some other DLLs, we’ve got good news
for you—the Win32API extension.

The Win32API module is documented beginning on page 461, but here’s a quick peek
at how it works.

You create a Win32API object that represents a call to a particular DLL entry point by
specifying the name of the function, the name of the DLL that contains the function,
and the function signature (argument types and return type). The resulting object can
then be used to make the function call.

Many of the arguments to DLL functions are binary structures of some form. Win32API
handles this by using Ruby String objects to pass the binary data back and forth. You
will need to pack and unpack these strings as necessary (see the example on page 461).

Windows Automation
If groveling around in the low-level Windows API doesn’t interest you, Windows
automation might—you can use Ruby as a client for Windows Automation thanks to
a Ruby extension called WIN32OLE, written by Masaki Suketa. The examples in this
section are taken from those provided in the WIN32OLE distribution.

Windows automation allows an automation controller (a client) to issue commands and
queries against an automation server, such as Microsoft Excel, Word, PowerPoint, and
so on.

You can execute a method of an automation server by calling a method of the same
name from a WIN32OLE object. For instance, you can create a new WIN32OLE client
that launches a fresh copy of Internet Explorer and commands it to visit the home page.

ie = WIN32OLE.new(’InternetExplorer.Application’)

ie.visible = true

ie.gohome

Methods that aren’t known to WIN32OLE (such as visible or gohome) are passed on to
the WIN32OLE#invoke method, which sends the proper commands to the server. The
WIN32OLE reference beginning on page 459 describes the class in detail, but we’ll go
over a few of its features here.

1. Using View/Options/File types from Explorer.

WINDOWS AUTOMATION 151

Getting and Setting Properties
You can set and get properties from the server using normal Ruby hash notation. For
example, to set the Rotation property in an Excel chart, you might write

excel = WIN32OLE.new("excel.application")

excelchart = excel.Charts.Add()

...

excelchart[’Rotation’] = 45

puts excelchart[’Rotation’]

An OLE object’s parameters are automatically set up as attributes of the WIN32OLE

object. This means that you can set a parameter by assigning to an object attribute.

excelchart.rotation = 45

r = excelchart.rotation

Because these attributes are conventional Ruby accessor methods, attribute names can-
not start with a capital letter. In this example, we have to use rotation instead of
Rotation.

Named Arguments
Other automation client languages such as Visual Basic have the concept of named
arguments. Suppose you had a Visual Basic routine with the signature:

Song(artist, title, length): rem Visual Basic

Instead of calling it with all three arguments in the order specified, you could use named
arguments.

Song title := ’Get It On’: rem Visual Basic

This is equivalent to the call Song(nil, ’Get It On’, nil).

In Ruby, you can use this feature by passing a hash with the named arguments.

Song.new(’title’ => ’Get It On’)

for each
Where Visual Basic has a “for each” statement to iterate over a collection of items in
a server, a WIN32OLE object has an each method (which takes a block) to accomplish
the same thing.

An Example
The following example, using Microsoft Excel, illustrates most of these concepts. First,
we create a new WIN32OLE object attached to Excel and set some cell values. Next we
select a range of cells and create a chart. We set the Type property in the excelchart
object to make it a 3D chart. Next we’ll loop through and change the chart rotation, 10◦

at a time. We’ll add a few charts, and we’ll use each to step through and print them
out. Finally, we’ll close down the Excel application and exit.

require ’win32ole’

152 CHAPTER 16. RUBY AND MICROSOFT WINDOWS

-4100 is the value for the Excel constant xl3DColumn.

ChartTypeVal = -4100;

Creates OLE object to Excel

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel[’Visible’] = TRUE;

workbook = excel.Workbooks.Add();

excel.Range("a1")[’Value’] = 3;

excel.Range("a2")[’Value’] = 2;

excel.Range("a3")[’Value’] = 1;

excel.Range("a1:a3").Select();

excelchart = workbook.Charts.Add();

excelchart[’Type’] = ChartTypeVal;

30.step(180, 10) do |rot|

excelchart[’Rotation’] = rot

end

excelchart2 = workbook.Charts.Add();

excelchart3 = workbook.Charts.Add();

charts = workbook.Charts

charts.each { |i| puts i }

excel.ActiveWorkbook.Close(0);

excel.Quit();

Optimizing
As with most (if not all) high-level languages, it can be all too easy to churn out code
that is unbearably slow, but that can be easily fixed with a little thought.

With WIN32OLE, you need to be careful with unnecessary dynamic lookups. Where pos-
sible, it is better to assign a WIN32OLE object to a variable and then reference elements
from it, rather than creating a long chain of “.” expressions.

For example, instead of writing

workbook.Worksheets(1).Range("A1").value = 1

workbook.Worksheets(1).Range("A2").value = 2

workbook.Worksheets(1).Range("A3").value = 4

workbook.Worksheets(1).Range("A4").value = 8

we can eliminate the common subexpressions by saving the first part of the expression
to a temporary variable and then make calls from that variable:

worksheet = workbook.Worksheets(1)

worksheet.Range("A1").value = 1

worksheet.Range("A2").value = 2

worksheet.Range("A3").value = 4

worksheet.Range("A4").value = 8

Chapter 17

Extending Ruby

It is easy to extend Ruby with new features by writing code in Ruby. Once you start
adding in low-level code written in C, however, the possibilities are endless.

Extending Ruby with C is pretty easy. For instance, suppose we are building a custom
Internet-ready jukebox for the Sunset Diner and Grill. It will play MP3 audio files from
a hard disk or audio CDs from a CD jukebox. We want to be able to control the jukebox
hardware from a Ruby program. The hardware vendor gave us a C header file and a
binary library to use; our job is to construct a Ruby object that makes the appropriate
C function calls.

But before we can get Ruby and C to work together, we need to see what the Ruby
world looks like from the C side.1

Ruby Objects in C
The first thing we need to look at is how to represent and access Ruby datatypes from
within C. Everything in Ruby is an object, and all variables are references to objects.
In C, this means that the type of all Ruby variables is VALUE, which is either a pointer
to a Ruby object or an immediate value (such as Fixnum).

This is how Ruby implements object-oriented code in C: a Ruby object is an allocated
structure in memory that contains a table of instance variables and information about
the class. The class itself is another object (an allocated structure in memory) that
contains a table of the methods defined for that class. On this foundation hangs all of
Ruby.

VALUE as a Pointer
When VALUE is a pointer, it is a pointer to one of the defined Ruby object structures—
you can’t have a VALUE that points to an arbitrary structure. The structures for each

1. Much of the information in this chapter is taken from the README.EXT file that is included in the
distribution. If you are planning on writing a Ruby extension, you may want to refer to that file for more
details as well as the latest changes.

153

154 CHAPTER 17. EXTENDING RUBY

built-in class are defined in “ruby.h” and are named RClassname, as in RString and
RArray.

You can check to see what type of structure is used for a particular VALUE in a number
of ways. The macro TYPE(obj) will return a constant representing the C type of the
given object: T_OBJECT, T_STRING, and so on. Constants for the built-in classes are
defined in “ruby.h”. Note that the type we are referring to here is an implementation
detail—it is not the same as the class of an object.

If you want to ensure that a value pointer points to a particular structure, you can use
the macro Check_Type, which will raise a TypeError exception if value is not of the
expected type (which is one of the constants T_STRING, T_FLOAT, and so on):

Check_Type(VALUE value , int type)

If speed is an issue, there are faster macros that check specifically for the immediate
values Fixnum and nil.

FIXNUM_P(value) → non-zero if value is a Fixnum

NIL_P(value) → non-zero if value is nil

RTEST(value) → non-zero if value is neither nil nor false

Again, note that we are talking about “type” as the C structure that represents a partic-
ular built-in type. The class of an object is a different beast entirely. The class objects
for the built-in classes are stored in C global variables named rb_cClassname (for
instance, rb_cObject); modules are named rb_mModulename.

It wouldn’t be advisable to mess with the data in these structures directly, however—
you may look, but don’t touch unless you are fond of debuggers. You should normally
use only the supplied C functions to manipulate Ruby data (we’ll talk more about this
in just a moment).

However, in the interests of efficiency you may need to dig into these structures to
obtain data. In order to dereference members of these C structures, you have to cast
the generic VALUE to the proper structure type. ruby.h contains a number of macros
that perform the proper casting for you, allowing you to dereference structure members
easily. These macros are named RCLASSNAME, as in RSTRING or RARRAY. For example:

VALUE str, arr;

RSTRING(str)->len → length of the Ruby string

RSTRING(str)->ptr → pointer to string storage

RARRAY(arr)->len → length of the Ruby array

RARRAY(arr)->capa → capacity of the Ruby array

RARRAY(arr)->ptr → pointer to array storage

VALUE as an Immediate Object
As we said above, immediate values are not pointers: Fixnum, Symbol, true, false,
and nil are stored directly in VALUE.

Fixnum values are stored as 31-bit numbers2 that are formed by shifting the original

2. Or 63-bit on wider CPU architectures.

WRITING RUBY IN C 155

number left 1 bit and then setting the least significant bit (bit 0) to “1.” When VALUE is
used as a pointer to a specific Ruby structure, it is guaranteed always to have an LSB
of zero; the other immediate values also have LSBs of zero. Thus, a simple bit test can
tell you whether or not you have a Fixnum.

There are several useful conversion macros for numbers as well as other standard
datatypes shown in Table 17.1 on page 157.

The other immediate values (true, false, and nil) are represented in C as the con-
stants Qtrue, Qfalse, and Qnil, respectively. You can test VALUE variables against
these constants directly, or use the conversion macros (which perform the proper cast-
ing).

Writing Ruby in C
One of the joys of Ruby is that you can write Ruby programs almost directly in C.
That is, you can use the same methods and the same logic, but with slightly different
syntax to accommodate C. For instance, here is a small, fairly boring test class written
in Ruby.

class Test

def initialize

@arr = Array.new

end

def add(anObject)

@arr.push(anObject)

end

end

The equivalent code in C should look somewhat familiar.

#include "ruby.h"

static VALUE t_init(VALUE self)

{

VALUE arr;

arr = rb_ary_new();

rb_iv_set(self, "@arr", arr);

return self;

}

static VALUE t_add(VALUE self, VALUE anObject)

{

VALUE arr;

arr = rb_iv_get(self, "@arr");

rb_ary_push(arr, anObject);

return arr;

}

VALUE cTest;

void Init_Test() {

cTest = rb_define_class("Test", rb_cObject);

rb_define_method(cTest, "initialize", t_init, 0);

rb_define_method(cTest, "add", t_add, 1);

}

156 CHAPTER 17. EXTENDING RUBY

Let’s go through this example in detail, as it illustrates many of the important concepts
in this chapter. First off, we need to include the header file “ruby.h” to obtain the
necessary definitions.

Now look at the last function, Init_Test. Every class or module defines a C global
function named Init_Name. This function will be called when the interpreter first
loads the extension Name (or on startup for statically linked extensions). It is used to
initialize the extension and to insinuate it into the Ruby environment. In this case, we
define a new class named Test, which is a subclass of Object (represented by the
external symbol rb_cObject; see “ruby.h” for others).

Next we set up add and initialize as two instance methods for class Test. The calls
to rb_define_method establish a binding between the Ruby method name and the C
function that will implement it, so a call to the add method in Ruby will call the C
function t_add with one argument.

Similarly, when new is called for this class, Ruby will construct a basic object and then
call initialize, which we have defined here to call the C function t_init with no
(Ruby) arguments.

Now go back and look at the definition of initialize. Even though we said it took no
arguments, there’s a parameter here! In addition to any Ruby arguments, every method
is passed an initial VALUE argument that contains the receiver for this method (the
equivalent of self in Ruby code).

The first thing we’ll do in initialize is create a Ruby array and set the instance
variable @arr to point to it. Just as you would expect if you were writing Ruby source,
referencing an instance variable that doesn’t exist creates it.

Finally, the function t_add gets the instance variable @arr from the current object and
calls Array#push to push the passed value onto that array. When accessing instance
variables in this way, the @-prefix is mandatory—otherwise the variable is created, but
cannot be referenced from Ruby.

Despite the extra, clunky syntax that C imposes, you’re still writing in Ruby—you can
manipulate objects using all of the method calls you’ve come to know and love, with
the added advantage of being able to craft tight, fast code when needed.

WARNING: Every C function that is callable from Ruby must return a VALUE, even if
it’s just Qnil. Otherwise, a core dump (or GPF) will be the likely result.

We can use the C version of the code in Ruby simply by require-ing it dynamically
at runtime (on most platforms).

require "code/ext/Test"

t = Test.new

t.add("Bill Chase")

Evaluating Ruby Expressions in C
If you are in the middle of some C code and you want to run an arbitrary Ruby expres-
sion without writing a bunch of C, you can always use the C version of eval. Suppose
you have a collection of objects that need to have a flag cleared.

SHARING DATA BETWEEN RUBY AND C 157

Table 17.1. C/Ruby datatype conversion functions and macros

C Datatypes to Ruby Objects:

INT2NUM(int) → Fixnum or Bignum
INT2FIX(int) → Fixnum (faster)
INT2NUM(long or int) → Fixnum or Bignum
INT2FIX(long or int) → Fixnum (faster)
CHR2FIX(char) → Fixnum
rb_str_new2(char *) → String
rb_float_new(double) → Float

Ruby Objects to C Datatypes:

int NUM2INT(Numeric) (Includes type check)
int FIX2INT(Fixnum) (Faster)

unsigned int NUM2UINT(Numeric) (Includes type check)
unsigned int FIX2UINT(Fixnum) (Includes type check)

long NUM2LONG(Numeric) (Includes type check)
long FIX2LONG(Fixnum) (Faster)

unsigned long NUM2ULONG(Numeric) (Includes type check)
char NUM2CHR(Numeric or String) (Includes type check)

char * STR2CSTR(String)
char * rb_str2cstr(String, int *length) Returns length as well

double NUM2DBL(Numeric)

rb_eval_string("anObject.each{|x| x.clearFlag }");

If you just want to call a particular method (which is cheaper than eval-ing an entire
string) you can use

rb_funcall(receiver, method_id, argc, ...)

Full descriptions of these and other commonly used C functions begin on page 169.

Sharing Data Between Ruby and C
We’ve covered enough of the basics now to return to our jukebox example—interfacing
C code with Ruby and sharing data and behavior between the two worlds.

Directly Sharing Variables
Although you could maintain a C version of some variable along with a separate Ruby
version of that variable, and struggle to keep the two in sync,3 it would be much better
to share a variable directly between Ruby and C. You can share global variables by

3. A clear violation of the DRY–Don’t Repeat Yourself—principle described in our book The Pragmatic
Programmer [HT00].

158 CHAPTER 17. EXTENDING RUBY

creating a Ruby object on the C side and then binding its address to a Ruby global
variable. In this case, the $ prefix is optional, but it helps clarify that this is a global
variable.

VALUE hardware_list;

hardware_list = rb_ary_new();

rb_define_variable("$hardware", &hardware_list);

...

rb_ary_push(hardware_list, rb_str_new2("DVD"));

rb_ary_push(hardware_list, rb_str_new2("CDPlayer1"));

rb_ary_push(hardware_list, rb_str_new2("CDPlayer2"));

The Ruby side can then access the C variable hardware_list as $hardware:

$hardware → ["DVD", "CDPlayer1", "CDPlayer2"]

You can also create hooked variables that will call a specified function when the vari-
able is accessed, and virtual variables that only call the hooks—no actual variable is
involved. See the API section that begins on page 171 for details.

If you create a Ruby object from C and store it in a C global variable without export-
ing it to Ruby, you must at least tell the garbage collector about it, lest ye be reaped
inadvertently:

VALUE obj;

obj = rb_ary_new();

rb_global_variable(obj);

Wrapping C Structures
Now on to the really fun stuff. We’ve got the vendor’s library that controls the audio
CD jukebox units, and we’re ready to wire it into Ruby. The vendor’s header file looks
like this:

typedef struct _cdjb {

int statusf;

int request;

void *data;

char pending;

int unit_id;

void *stats;

} CDJukebox;

// Allocate a new CDPlayer structure and bring it online

CDJukebox *CDPlayerNew(int unit_id);

// Deallocate when done (and take offline)

void CDPlayerDispose(CDJukebox *rec);

// Seek to a disc, track and notify progress

void CDPlayerSeek(CDJukebox *rec,

int disc,

int track,

void (*done)(CDJukebox *rec, int percent));

// ... others...

// Report a statistic

double CDPlayerAvgSeekTime(CDJukebox *rec);

SHARING DATA BETWEEN RUBY AND C 159

This vendor has its act together; while the vendor might not admit it, the code is written
with an object-oriented flavor. We don’t know what all those fields mean within the
CDJukeBox structure, but that’s okay—we can treat it as an opaque pile of bits. The
vendor’s code knows what to do with it, we just have to carry it around.

Anytime you have a C-only structure that you would like to handle as a Ruby object,
you should wrap it in a special, internal Ruby class called DATA (type T_DATA). There
are two macros to do this wrapping, and one to retrieve your structure back out again.

API: C Datatype Wrapping

VALUE Data_Wrap_Struct(VALUE class, void (*mark)(),

void (*free)(), void *ptr)

Wraps the given C datatype ptr, registers the two garbage collection
routines (see below), and returns a VALUE pointer to a genuine Ruby
object. The C type of the resulting object is T_DATA and its Ruby
class is class.

VALUE Data_Make_Struct(VALUE class, c-type, void (*mark)(),

void (*free)(), c-type *)

Allocates a structure of the indicated type first, then proceeds as
Data_Wrap_Struct.c-type is the name of the C datatype that you’re
wrapping, not a variable of that type.

Data_Get_Struct(VALUE obj,c-type,c-type *)

Returns the original pointer. This macro is a type-safe wrapper
around the macro DATA_PTR(obj), which evaluates the pointer.

The object created by Data_Wrap_Struct is a normal Ruby object, except that it has
an additional C datatype that can’t be accessed from Ruby. As you can see in Fig-
ure 17.1 on the next page, this C datatype is separate from any instance variables that
the object contains. But since it’s a separate thing, how do you get rid of it when the
garbage collector claims this object? What if you have to release some resource (close
some file, clean up some lock or IPC mechanism, and so on)?

In order to participate in Ruby’s mark-and-sweep garbage collection process, you need
to define a routine to free your structure, and possibly a routine to mark any references
from your structure to other structures. Both routines take a void pointer, a reference
to your structure. The mark routine will be called by the garbage collector during its
“mark” phase. If your structure references other Ruby objects, then your mark function
needs to identify these objects using rb_gc_mark(value). If the structure doesn’t
reference other Ruby objects, you can simply pass 0 as a function pointer.

When the object needs to be disposed of, the garbage collector will call the free rou-
tine to free it. If you have allocated any memory yourself (for instance, by using
Data_Make_Struct), you’ll need to pass a free function—even if it’s just the stan-
dard C library’s free routine. For complex structures that you have allocated, your
free function may need to traverse the structure to free all the allocated memory.

First a simple example, without any special handling. Given the structure definition

160 CHAPTER 17. EXTENDING RUBY

Figure 17.1. Wrapping objects around C datatypes

aJukebox1
@unit: 1

C
struct

CDPlayer

aJukebox2
@unit: 2

C
struct

CDPlayer

typedef struct mp3info {

char *title;

char *artist;

int genre;

} MP3Info;

we can create a structure, populate it, and wrap it as an object.4

MP3Info *p;

VALUE info;

p = ALLOC(MP3Info);

p->artist = "Maynard Ferguson";

p->title = "Chameleon";

...

info = Data_Wrap_Struct(cTest, 0, free, p);

info is a VALUE type, a genuine Ruby object of class Test (represented in C by the
built-in type T_DATA). You can push it onto an array, hold a reference to it in an object,
and so on. At some later point in the code, we may want to access this structure again,
given the VALUE:

VALUE doit(VALUE info)

MP3Info *p;

Data_Get_Struct(info, MP3Info, p);

...

p->artist → "Maynard Ferguson"

p->title → "Chameleon"

...

In order to follow convention, however, you may need a few more things: support for an
initialize method, and a “C-constructor.” If you were writing Ruby source, you’d
allocate and initialize an object by calling new. In C extensions, the corresponding call

4. We cheat a bit in this example. Our MP3Info structure has a couple of char pointers in it. In our
code we initialize them from two static strings. This means that we don’t have to free these strings when the
MP3Info structure is freed. If we’d allocated these strings dynamically, we’d have to write a free method to
dispose of them.

SHARING DATA BETWEEN RUBY AND C 161

is Data_Make_Struct.However, although this allocates memory for the object, it does
not automatically call an initialize method; you need to do that yourself:

info = Data_Make_Struct(cTest, MP3Info, 0, free, one);

rb_obj_call_init(info, argc, argv);

This has the benefit of allowing subclasses in Ruby to override or augment the basic
initialize in your class. Within initialize, it is allowable (but not necessar-
ily advisable) to alter the existing data pointer, which may be accessed directly with
DATA_PTR(obj).

And finally, you may want to define a “C-constructor”—that is, a globally available C
function that will create the object in one convenient call. You can use this function
within your own code or allow other extension libraries to use it. All of the built-in
classes support this idea with functions such as rb_str_new, rb_ary_new, and so on.
We can make our own:

VALUE mp3_info_new() {

VALUE info;

MP3Info *one;

info = Data_Make_Struct(cTest, MP3Info, 0, free, one);

...

rb_obj_call_init(info, 0, 0);

return info;

}

An Example
Okay, now we’re ready for a full-size example. Given our vendor’s header file above,
we write the following code.

#include "ruby.h"

#include "cdjukebox.h"

VALUE cCDPlayer;

static void cd_free(void *p) {

CDPlayerDispose(p);

}

static void progress(CDJukebox *rec, int percent)

{

if (rb_block_given_p()) {

if (percent > 100) percent = 100;

if (percent < 0) percent = 0;

rb_yield(INT2FIX(percent));

}

}

static VALUE

cd_seek(VALUE self, VALUE disc, VALUE track)

{

CDJukebox *ptr;

Data_Get_Struct(self, CDJukebox, ptr);

CDPlayerSeek(ptr,

NUM2INT(disc),

NUM2INT(track),

progress);

162 CHAPTER 17. EXTENDING RUBY

return Qnil;

}

static VALUE

cd_seekTime(VALUE self)

{

double tm;

CDJukebox *ptr;

Data_Get_Struct(self, CDJukebox, ptr);

tm = CDPlayerAvgSeekTime(ptr);

return rb_float_new(tm);

}

static VALUE

cd_unit(VALUE self)

{

return rb_iv_get(self, "@unit");

}

static VALUE

cd_init(VALUE self, VALUE unit)

{

rb_iv_set(self, "@unit", unit);

return self;

}

VALUE cd_new(VALUE class, VALUE unit)

{

VALUE argv[1];

CDJukebox *ptr = CDPlayerNew(NUM2INT(unit));

VALUE tdata = Data_Wrap_Struct(class, 0, cd_free, ptr);

argv[0] = unit;

rb_obj_call_init(tdata, 1, argv);

return tdata;

}

void Init_CDJukebox() {

cCDPlayer = rb_define_class("CDPlayer", rb_cObject);

rb_define_singleton_method(cCDPlayer, "new", cd_new, 1);

rb_define_method(cCDPlayer, "initialize", cd_init, 1);

rb_define_method(cCDPlayer, "seek", cd_seek, 2);

rb_define_method(cCDPlayer, "seekTime", cd_seekTime, 0);

rb_define_method(cCDPlayer, "unit", cd_unit, 0);

}

Now we have the ability to control our jukebox from Ruby in a nice, object-oriented
manner:

require "code/ext/CDJukebox"

p = CDPlayer.new(1)

puts "Unit is #{p.unit}"

p.seek(3, 16) {|x| puts "#{x}% done" }

puts "Avg. time was #{p.seekTime} seconds"

produces:

Unit is 1

26% done

79% done

100% done

Avg. time was 1.2 seconds

MEMORY ALLOCATION 163

This example demonstrates most of what we’ve talked about so far, with one additional
neat feature. The vendor’s library provided a callback routine—a function pointer that
is called every so often while the hardware is grinding its way to the next disc. We’ve
set that up here to run a code block passed as an argument to seek. In the progress

function, we check to see if there is an iterator in the current context and, if there is,
run it with the current percent done as an argument.

Memory Allocation
You may sometimes need to allocate memory in an extension that won’t be used for
object storage—perhaps you’ve got a giant bitmap for a Bloom filter, or an image, or a
whole bunch of little structures that Ruby doesn’t use directly.

In order to work correctly with the garbage collector, you should use the following
memory allocation routines. These routines do a little bit more work than the standard
malloc. For instance, if ALLOC_N determines that it cannot allocate the desired amount
of memory, it will invoke the garbage collector to try to reclaim some space. It will
raise a NoMemError if it can’t or if the requested amount of memory is invalid.

API: Memory Allocation

type * ALLOC_N(c-type, n)

Allocates n c-type objects, where c-type is the literal name of the C
type, not a variable of that type.

type * ALLOC(c-type)

Allocates a c-type and casts the result to a pointer of that type.

REALLOC_N(var, c-type, n)

Reallocates n c-types and assigns the result to var, a pointer to a c-
type.

type * ALLOCA_N(c-type, n)

Allocates memory for n objects of c-type on the stack—this memory
will be automatically freed when the function that invokes ALLOCA_N
returns.

Creating an Extension
Having written the source code for an extension, we now need to compile it so Ruby
can use it. We can either do this as a shared object, which is dynamically loaded at
runtime, or statically link the extension into the main Ruby interpreter itself. The basic
procedure is the same:

• Create the C source code file(s) in a given directory.
• Create extconf.rb.

164 CHAPTER 17. EXTENDING RUBY

• Run extconf.rb to create a Makefile for the C files in this directory.
• Run make.
• Run make install.

Creating a Makefile with extconf.rb
Figure 17.2 on the facing page shows the overall workflow when building an extension.
The key to the whole process is the extconf.rb program which you, as a developer,
create. In extconf.rb, you write a simple program that determines what features are
available on the user’s system and where those features may be located. Executing
extconf.rb builds a customized Makefile, tailored for both your application and the
system on which it’s being compiled. When you run the make command against this
Makefile, your extension is built and (optionally) installed.

The simplest extconf.rb may be just two lines long, and for many extensions this is
sufficient.

require ’mkmf’

create_makefile("Test")

The first line brings in the mkmf library module (documented beginning on page 412).
This contains all the commands we’ll be using. The second line creates a Makefile for
an extension called “Test.” (Note that “Test” is the name of the extension; the makefile
will always be called “Makefile.”) Test will be built from all the C source files in the
current directory.

Let’s say that we run this extconf.rb program in a directory containing a single
source file, main.c. The result is a Makefile that will build our extension. On our
system, this contains the following commands.

gcc -fPIC -I/usr/local/lib/ruby/1.6/i686-linux -g -O2 \

-c main.c -o main.o

gcc -shared -o Test.so main.o -lc

The result of this compilation is Test.so, which may be dynamically linked into
Ruby at runtime with “require”. See how the mkmf commands have located platform-
specific libraries and used compiler-specific options automatically. Pretty neat, eh?

Although this basic program works for many simple extensions, you may have to do
some more work if your extension needs header files or libraries that aren’t included
in the default compilation environment, or if you conditionally compile code based on
the presence of libraries or functions.

A common requirement is to specify nonstandard directories where include files and
libraries may be found. This is a two-step process. First, your extconf.rb should con-
tain one or more dir_config commands. This specifies a tag for a set of directories.
Then, when you run the extconf.rb program, you tell mkmf where the corresponding
physical directories are on the current system.

If extconf.rb contains the line dir_config(name), then you give the location of
the corresponding directories with the command-line options:

CREATING AN EXTENSION 165

Figure 17.2. Building an extension

extconf.rb

ruby extconf.rb

Produces

Makefile

make

Produces

Test.so

mkmf

libraries*.c

--with-name-include=directory

Add directory/include to the compile command.

--with-name-lib=directory

Add directory/lib to the link command.

If (as is common) your include and library directories are both subdirectories of some
other directory, and (as is also common) they’re called include and lib, you can take
a shortcut:

--with-name-dir=directory

Add directory/lib and directory/include to the link command and compile com-
mand, respectively.

There’s a twist here. As well as specifying all these --with options when you run
extconf.rb, you can also use the --with options that were specified when Ruby was
built for your machine. This means you can find out the locations of libraries that are
used by Ruby itself.

To make all this concrete, lets say you need to use libraries and include files for the CD
jukebox we’re developing. Your extconf.rb program might contain

require ’mkmf’

dir_config(’cdjukebox’)

.. more stuff

create_makefile("CDJukeBox")

You’d then run extconf.rb with something like:

% ruby extconf.rb --with-cdjukebox-dir=/usr/local/cdjb

166 CHAPTER 17. EXTENDING RUBY

The generated Makefilewould assume that the libraries were in /usr/local/cdjb/lib

and the include files were in /usr/local/cdjb/include.

The dir_config command adds to the list of places to search for libraries and include
files. It does not, however, link the libraries into your application. To do that, you’ll
need to use one or more have_library or find_library commands.

have_library looks for a given entry point in a named library. If it finds the entry
point, it adds the library to the list of libraries to be used when linking your extension.
find_library is similar, but allows you to specify a list of directories to search for
the library.

require ’mkmf’

dir_config(’cdjukebox’)

have_library(’cdjb’, ’CDPlayerNew’)

create_makefile("CDJukeBox")

On some platforms, a popular library may be in one of several places. The X Window
system, for example, is notorious for living in different directories on different systems.
The find_library command will search a list of supplied directories to find the right
one (this is different from have_library, which uses only configuration information
for the search). For example, to create a Makefile that uses X Windows and a jpeg
library, extconf.rb might contain

require ’mkmf’

if have_library("jpeg","jpeg_mem_init") and

find_library("X11", "XOpenDisplay", "/usr/X11/lib",

"/usr/X11R6/lib", "/usr/openwin/lib")

then

create_makefile("XThing")

else

puts "No X/JPEG support available"

end

We’ve added some additional functionality to this program. All of the mkmf commands
return false if they fail. This means that we can write an extconf.rb that generates
a Makefile only if everything it needs is present. The Ruby distribution does this so
that it will try to compile only those extensions that are supported on your system.

You also may want your extension code to be able to configure the features it uses
depending on the target environment. For example, our CD jukebox may be able to use
a high-performance MP3 decoder if the end user has one installed. We can check by
looking for its header file.

require ’mkmf’

dir_config(’cdjukebox’)

have_library(’cdjb’, ’CDPlayerNew’)

have_header(’hp_mp3.h’)

create_makefile("CDJukeBox")

We can also check to see if the target environment has a particular function in any of
the libraries we’ll be using. For example, the setpriority call would be useful but
isn’t always available. We can check for it with:

require ’mkmf’

/usr/local/cdjb/lib
/usr/local/cdjb/include

EMBEDDING A RUBY INTERPRETER 167

dir_config(’cdjukebox’)

have_func(’setpriority’)

create_makefile("CDJukeBox")

Both have_header and have_func define preprocessor constants if they find their tar-
gets. The names are formed by converting the target name to uppercase and prepending
“HAVE_”. Your C code can take advantage of this using constructs such as:

#if defined(HAVE_HP_MP3_H)

include <hp_mp3.h>

#endif

#if defined(HAVE_SETPRIORITY)

err = setpriority(PRIOR_PROCESS, 0, -10)

#endif

If you have special requirements that can’t be met with all these mkmf commands, your
program can directly add to the global variables $CFLAGS and $LFLAGS, which are
passed to the compiler and linker, respectively.

Static Linking
Finally, if your system doesn’t support dynamic linking, or if you have an extension
module that you want to have statically linked into Ruby itself, edit the file ext/Setup
in the distribution and add your directory to the list of extensions in the file, then
rebuild Ruby. The extensions listed in Setup will be statically linked into the Ruby
executable. If you want to disable any dynamic linking, and link all extensions stati-
cally, edit ext/Setup to contain the following option.

option nodynamic

Embedding a Ruby Interpreter
In addition to extending Ruby by adding C code, you can also turn the problem around
and embed Ruby itself within your application. Here’s an example.

#include "ruby.h"

main() {

/* ... our own application stuff ... */

ruby_init();

ruby_script("embedded");

rb_load_file("start.rb");

while (1) {

if (need_to_do_ruby) {

ruby_run();

}

/* ... run our app stuff */

}

}

To initialize the Ruby interpreter, you need to call ruby_init(). But on some plat-
forms, you may need to take special steps before that:

168 CHAPTER 17. EXTENDING RUBY

#if defined(NT)

NtInitialize(&argc, &argv);

#endif

#if defined(__MACOS__) && defined(__MWERKS__)

argc = ccommand(&argv);

#endif

See main.c in the Ruby distribution for any other special defines or setup needed for
your platform.

API: Embedded Ruby API

void ruby_init()

Sets up and initializes the interpreter. This function should be called
before any other Ruby-related functions.

void ruby_options(int argc, char **argv)

Gives the Ruby interpreter the command-line options.

void ruby_script(char *name)

Sets the name of the Ruby script (and $0) to name.

void rb_load_file(char *file)

Loads the given file into the interpreter.

void ruby_run()

Runs the interpreter.

You need to take some special care with exception handling; any Ruby calls you make
at this top level should be protected to catch exceptions and handle them cleanly.
rb_protect, rb_rescue, and related functions are documented on page 173.

For an example of embedding a Ruby interpreter within another program, see also
eruby, which is described beginning on page 135.

Bridging Ruby to Other Languages
So far, we’ve discussed extending Ruby by adding routines written in C. However, you
can write extensions in just about any language, as long as you can bridge the two
languages with C. Almost anything is possible, including awkward marriages of Ruby
and C++, Ruby and Java, and so on.

But you may be able to accomplish the same thing without resorting to C code. For
example, you could bridge to other languages using middleware such as CORBA or
COM. See the section on Windows automation beginning on page 150 for more details.

RUBY C LANGUAGE API 169

Ruby C Language API
Last, but by no means least, here are several C-level functions that you may find useful
when writing an extension.

Some functions require an ID: you can obtain an ID for a string by using rb_intern

and reconstruct the name from an ID by using rb_id2name.

As most of these C functions have Ruby equivalents that are already described in detail
elsewhere in this book, the descriptions here will be brief.

Also note that the following listing is not complete. There are many more functions
available—too many to document them all, as it turns out. If you need a method that
you can’t find here, check “ruby.h” or “intern.h” for likely candidates. Also, at
or near the bottom of each source file is a set of method definitions that describe the
binding from Ruby methods to C functions. You may be able to call the C function
directly, or search for a wrapper function that calls the function you are looking for.
The following list, based on the list in README.EXT, shows the main source files in the
interpreter.

Ruby Language Core
class.c, error.c, eval.c, gc.c, object.c, parse.y, variable.c

Utility Functions
dln.c, regex.c, st.c, util.c

Ruby Interpreter
dmyext.c, inits.c, keywords main.c, ruby.c, version.c

Base Library
array.c, bignum.c, compar.c, dir.c, enum.c, file.c, hash.c, io.c, marshal.c,
math.c, numeric.c, pack.c, prec.c, process.c, random.c, range.c, re.c,
signal.c, sprintf.c, string.c, struct.c, time.c

API: Defining Objects
VALUE rb_define_class(char *name, VALUE superclass)

Defines a new class at the top level with the given name and super-
class (for class Object, use rb_cObject).

VALUE rb_define_module(char *name)

Defines a new module at the top level with the given name.

VALUE rb_define_class_under(VALUE under, char *name,

VALUE superclass)

Defines a nested class under the class or module under.

VALUE rb_define_module_under(VALUE under, char *name)

Defines a nested module under the class or module under.

void rb_include_module(VALUE parent, VALUE module)

Includes the given module into the class or module parent.

170 CHAPTER 17. EXTENDING RUBY

void rb_extend_object(VALUE obj, VALUE module)

Extends obj with module.

VALUE rb_require(const char *name)

Equivalent to “require name.” Returns Qtrue or Qfalse.

API: Defining Methods

In some of the function definitions that follow, the parameter argc specifies how many
arguments a Ruby method takes. It may have the following values.

argc Function prototype

0..17 VALUE func(VALUE self, VALUE arg...)

The C function will be called with this many actual arguments.
−1 VALUE func(int argc, VALUE *argv, VALUE self)

The C function will be given a variable number of arguments passed as a C
array.

−2 VALUE func(VALUE self, VALUE args)

The C function will be given a variable number of arguments passed as a Ruby
array.

In a function that has been given a variable number of arguments, you can use the C
function rb_scan_args to sort things out (see below).

void rb_define_method(VALUE classmod, char *name,

VALUE(*func)(), int argc)

Defines an instance method in the class or module classmod with
the given name, implemented by the C function func and taking argc
arguments.

void rb_define_module_function(VALUE classmod, char *name,

VALUE(*func)(), int argc))

Defines a method in class classmod with the given name, imple-
mented by the C function func and taking argc arguments.

void rb_define_global_function(char *name, VALUE(*func)(),

int argc)

Defines a global function (a private method of Kernel) with the
given name, implemented by the C function func and taking argc
arguments.

void rb_define_singleton_method(VALUE classmod, char *name,

VALUE(*func)(), int argc)

Defines a singleton method in class classmod with the given name,
implemented by the C function func and taking argc arguments.

RUBY C LANGUAGE API 171

int rb_scan_args(int argcount, VALUE *argv, char *fmt, ...)

Scans the argument list and assigns to variables similar to scanf:
fmt is a string containing zero, one, or two digits followed by some
flag characters. The first digit indicates the count of mandatory argu-
ments; the second is the count of optional arguments. A “*” means
to pack the rest of the arguments into a Ruby array. A “&” means
that an attached code block will be taken and assigned to the given
variable (if no code block was given, Qnil will be assigned). After
the fmt string, pointers to VALUE are given (as with scanf) to which
the arguments are assigned.

VALUE name, one, two, rest;

rb_scan_args(argc, argv, "12", &name, &one, &two);

rb_scan_args(argc, argv, "1*", &name, &rest);

void rb_undef_method(VALUE classmod, const char *name)

Undefines the given method name in the given classmod class or
module.

void rb_define_alias(VALUE classmod, const char *newname,

const char *oldname)

Defines an alias for oldname in class or module classmod.

API: Defining Variables and Constants

void rb_define_const(VALUE classmod, char *name, VALUE value)

Defines a constant in the class or module classmod, with the given
name and value.

void rb_define_global_const(char *name, VALUE value)

Defines a global constant with the given name and value.

void rb_define_variable(const char *name, VALUE *object)

Exports the address of the given object that was created in C to the
Ruby namespace as name. From Ruby, this will be a global variable,
so name should start with a leading dollar sign. Be sure to honor
Ruby’s rules for allowed variable names; illegally named variables
will not be accessible from Ruby.

void rb_define_class_variable(VALUE class, const char *name,

VALUE val)

Defines a class variable name (which must be specified with a “@@”
prefix) in the given class, initialized to value.

172 CHAPTER 17. EXTENDING RUBY

void rb_define_virtual_variable(const char *name,

VALUE(*getter)(),

void(*setter)())

Exports a virtual variable to Ruby namespace as the global $name.
No actual storage exists for the variable; attempts to get and set the
value will call the given functions with the prototypes:

VALUE getter(ID id, VALUE *data,

struct global_entry *entry);

void setter(VALUE value, ID id, VALUE *data,

struct global_entry *entry);

You will likely not need to use the entry parameter and can safely
omit it from your function declarations.

void rb_define_hooked_variable(const char *name,

VALUE *variable,

VALUE(*getter)(),

void(*setter)())

Defines functions to be called when reading or writing to variable.
See also rb_define_virtual_variable.

void rb_define_readonly_variable(const char *name,

VALUE *value)

Same as rb_define_variable, but read-only from Ruby.

void rb_define_attr(VALUE variable, const char *name,

int read, int write)

Creates accessor methods for the given variable, with the given
name. If read is nonzero, create a read method; if write is nonzero,
create a write method.

void rb_global_variable(VALUE *obj)

Registers the given address with the garbage collector.

API: Calling Methods

VALUE rb_funcall(VALUE recv, ID id, int argc, ...)

Invokes the method given by id in the object recv with the given
number of arguments argc and the arguments themselves (possibly
none).

VALUE rb_funcall2(VALUE recv, ID id, int argc, VALUE *args)

Invokes the method given by id in the object recv with the given
number of arguments argc and the arguments themselves given in
the C array args.

VALUE rb_funcall3(VALUE recv, ID id, int argc, VALUE *args)

Same as rb_funcall2, but will not call private methods.

RUBY C LANGUAGE API 173

VALUE rb_apply(VALUE recv, ID name, int argc, VALUE args)

Invokes the method given by id in the object recv with the given
number of arguments argc and the arguments themselves given in
the Ruby Array args.

ID rb_intern(char *name)

Returns an ID for a given name. If the name does not exist, a symbol
table entry will be created for it.

char * rb_id2name(ID id)

Returns a name for the given id.

VALUE rb_call_super(int argc, VALUE *args)

Calls the current method in the superclass of the current object.

API: Exceptions

void rb_raise(VALUE exception, const char *fmt, ...)

Raises an exception. The given string fmt and remaining arguments
are interpreted as with printf.

void rb_fatal(const char *fmt, ...)

Raises a Fatal exception, terminating the process. No rescue blocks
are called, but ensure blocks will be called. The given string fmt and
remaining arguments are interpreted as with printf.

void rb_bug(const char *fmt, ...)

Terminates the process immediately—no handlers of any sort will be
called. The given string fmt and remaining arguments are interpreted
as with printf. You should call this function only if a fatal bug has
been exposed. You don’t write fatal bugs, do you?

void rb_sys_fail(const char *msg)

Raises a platform-specific exception corresponding to the last known
system error, with the given msg.

VALUE rb_rescue(VALUE (*body)(), VALUE args, VALUE(*rescue)(),

VALUE rargs)

Executes body with the given args. If a StandardError exception
is raised, then execute rescue with the given rargs.

VALUE rb_ensure(VALUE(*body)(), VALUE args, VALUE(*ensure)(),

VALUE eargs)

Executes body with the given args. Whether or not an exception is
raised, execute ensure with the given rargs after body has completed.

VALUE rb_protect(VALUE (*body)(), VALUE args, int *result)

Executes body with the given args and returns nonzero in result if
any exception was raised.

174 CHAPTER 17. EXTENDING RUBY

void rb_notimplement()

Raises a NotImpError exception to indicate that the enclosed func-
tion is not implemented yet, or not available on this platform.

void rb_exit(int status)

Exits Ruby with the given status. Raises a SystemExit exception
and calls registered exit functions and finalizers.

void rb_warn(const char *fmt, ...)

Unconditionally issues a warning message to standard error. The
given string fmt and remaining arguments are interpreted as with
printf.

void rb_warning(const char *fmt, ...)

Conditionally issues a warning message to standard error if Ruby
was invoked with the -w flag. The given string fmt and remaining
arguments are interpreted as with printf.

API: Iterators

void rb_iter_break()

Breaks out of the enclosing iterator block.

VALUE rb_each(VALUE obj)

Invokes the each method of the given obj.

VALUE rb_yield(VALUE arg)

Transfers execution to the iterator block in the current context, pass-
ing arg as an argument. Multiple values may be passed in an array.

int rb_block_given_p()

Returns true if yield would execute a block in the current context—
that is, if a code block was passed to the current method and is avail-
able to be called.

VALUE rb_iterate(VALUE (*method)(), VALUE args,

VALUE (*block)(), VALUE arg2)

Invokes method with argument args and block block. A yield from
that method will invoke block with the argument given to yield, and
a second argument arg2.

VALUE rb_catch(const char *tag, VALUE (*proc)(), VALUE value)

Equivalent to Ruby catch.

void rb_throw(const char *tag , VALUE value)

Equivalent to Ruby throw.

RUBY C LANGUAGE API 175

API: Accessing Variables

VALUE rb_iv_get(VALUE obj, char *name)

Returns the instance variable name (which must be specified with a
“@” prefix) from the given obj.

VALUE rb_ivar_get(VALUE obj, ID name)

Returns the instance variable name from the given obj.

VALUE rb_iv_set(VALUE obj, char *name, VALUE value)

Sets the value of the instance variable name (which must be specified
with a “@” prefix) in the given obj to value. Returns value.

VALUE rb_ivar_set(VALUE obj, ID name, VALUE value)

Sets the value of the instance variable name in the given obj to value.
Returns value.

VALUE rb_gv_set(const char *name, VALUE value)

Sets the global variable name (the “$” prefix is optional) to value.
Returns value.

VALUE rb_gv_get(const char *name)

Returns the global variable name (the “$” prefix is optional).

void rb_cvar_set(VALUE class, ID name, VALUE val)

Sets the class variable name in the given class to value.

VALUE rb_cvar_get(VALUE class, ID name)

Returns the class variable name from the given class.

int rb_cvar_defined(VALUE class, ID name)

Returns Qtrue if the given class variable name has been defined for
class; otherwise, returns Qfalse.

void rb_cv_set(VALUE class, const char *name, VALUE val)

Sets the class variable name (which must be specified with a “@@”
prefix) in the given class to value.

VALUE rb_cv_get(VALUE class, const char *name)

Returns the class variable name (which must be specified with a “@@”
prefix) from the given class.

API: Object Status

OBJ_TAINT(VALUE obj)

Marks the given obj as tainted.

int OBJ_TAINTED(VALUE obj)

Returns nonzero if the given obj is tainted.

176 CHAPTER 17. EXTENDING RUBY

OBJ_FREEZE(VALUE obj)

Marks the given obj as frozen.

int OBJ_FROZEN(VALUE obj)

Returns nonzero if the given obj is frozen.

Check_SafeStr(VALUE str)

Raises SecurityError if current safe level > 0 and str is tainted, or
a TypeError if str is not a T_STRING.

int rb_safe_level()

Returns the current safe level.

void rb_secure(int level)

Raises SecurityError if level <= current safe level.

void rb_set_safe_level(int newlevel)

Sets the current safe level to newlevel.

API: Commonly Used Methods

VALUE rb_ary_new()

Returns a new Array with default size.

VALUE rb_ary_new2(long length)

Returns a new Array of the given length.

VALUE rb_ary_new3(long length, ...)

Returns a new Array of the given length and populated with the
remaining arguments.

VALUE rb_ary_new4(long length, VALUE *values)

Returns a new Array of the given length and populated with the C
array values.

void rb_ary_store(VALUE self, long index, VALUE value)

Stores value at index in array self.

VALUE rb_ary_push(VALUE self, VALUE value)

Pushes value onto the end of array self. Returns value.

VALUE rb_ary_pop(VALUE self)

Removes and returns the last element from the array self.

VALUE rb_ary_shift(VALUE self)

Removes and returns the first element from the array self.

VALUE rb_ary_unshift(VALUE self, VALUE value)

Pushes value onto the front of array self. Returns value.

RUBY C LANGUAGE API 177

VALUE rb_ary_entry(VALUE self, long index)

Returns array self ’s element at index.

int rb_respond_to(VALUE self, ID method)

Returns nonzero if self responds to method.

VALUE rb_thread_create(VALUE (*func)(), void *data)

Runs func in a new thread, passing data as an argument.

VALUE rb_hash_new()

Returns a new, empty Hash.

VALUE rb_hash_aref(VALUE self, VALUE key)

Returns the element corresponding to key in self.

VALUE rb_hash_aset(VALUE self, VALUE key, VALUE value)

Sets the value for key to value in self. Returns value.

VALUE rb_obj_is_instance_of(VALUE obj, VALUE klass)

Returns Qtrue if obj is an instance of klass.

VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)

Returns Qtrue if klass is the class of obj or class is one of the super-
classes of the class of obj.

VALUE rb_str_new(const char *src, long length)

Returns a new String initialized with length characters from src.

VALUE rb_str_new2(const char *src)

Returns a new String initialized with the null-terminated C string
src.

VALUE rb_str_dup(VALUE str)

Returns a new String object duplicated from str.

VALUE rb_str_cat(VALUE self, const char *src, long length)

Concatenates length characters from src onto the String self.
Returns self.

VALUE rb_str_concat(VALUE self, VALUE other)

Concatenates other onto the String self. Returns self.

VALUE rb_str_split(VALUE self, const char *delim)

Returns an array of String objects created by splitting self on
delim.

Part III

Ruby Crystallized

179

Chapter 18

The Ruby Language

This chapter is a bottom-up look at the Ruby language. Unlike the previous tutorial,
here we’re concentrating on presenting facts, rather than motivating some of the lan-
guage design features. We also ignore the built-in classes and modules where possible.
These are covered in depth starting on page 251.

If the content of this chapter looks familiar, it’s because it should; we’ve covered just
about all of this in the earlier tutorial chapters. Consider this chapter to be a self-
contained reference to the core Ruby language.

Source Layout
Ruby programs are written in 7-bit ASCII.1

Ruby is a line-oriented language. Ruby expressions and statements are terminated at
the end of a line unless the statement is obviously incomplete—for example if the last
token on a line is an operator or comma. A semicolon can be used to separate multiple
expressions on a line. You can also put a backslash at the end of a line to continue it onto
the next. Comments start with ‘#’ and run to the end of the physical line. Comments
are ignored during compilation.

a = 1

b = 2; c = 3

d = 4 + 5 + # no ’\’ needed

6 + 7

e = 8 + 9 \

+ 10 # ’\’ needed

Physical lines between a line starting with =begin and a line starting with =end are
ignored by the compiler and may be used for embedded documentation (see Appendix
A, which begins on page 465).

1. Ruby also has extensive support for Kanji, using the EUC, SJIS, or UTF-8 coding system. If a code
set other than 7-bit ASCII is used, the KCODE option must be set appropriately, as shown on page 126.

181

182 CHAPTER 18. THE RUBY LANGUAGE

Ruby reads its program input in a single pass, so you can pipe programs to the com-
piler’s stdin.

echo ’print "Hello\n"’ | ruby

If the compiler comes across a line anywhere in the source containing just “_ _END__”,
with no leading or trailing whitespace, it treats that line as the end of the program—
any subsequent lines will not be compiled. However, these lines can be read into the
running program using the global IO object DATA, described on page 197.

BEGIN and END Blocks
Every Ruby source file can declare blocks of code to be run as the file is being loaded
(the BEGIN blocks) and after the program has finished executing (the END blocks).

BEGIN {

begin code
}

END {

end code
}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in
the order they are encountered. END blocks are executed in reverse order.

General Delimited Input
There are alternative forms of literal strings, arrays, regular expressions, and shell com-
mands that are specified using a generalized delimited syntax. All these literals start
with a percent character, followed by a single character that identifies the literal’s type.
These characters are summarized in Table 18.1; the actual literals are described in the
corresponding sections later in this chapter.

Table 18.1. General delimited input

Type Meaning See Page

%q Single-quoted string 184
%Q, % Double-quoted string 184
%w Array of tokens 186
%r Regular expression pattern 187
%x Shell command 198

Following the type character is a delimiter, which can be any character. If the delimiter
is one of the characters “(”, “[”, “{”, or “<”, the literal consists of the characters up to
the matching closing delimiter, taking account of nested delimiter pairs. For all other
delimiters, the literal comprises the characters up to the next occurrence of the delimiter
character.

%q/this is a string/

%q-string-

THE BASIC TYPES 183

%q(a (nested) string)

Delimited strings may continue over multiple lines.

%q{def fred(a)

a.each { |i| puts i }

end}

The Basic Types
The basic types in Ruby are numbers, strings, arrays, hashes, ranges, symbols, and
regular expressions.

Integer and Floating Point Numbers
Ruby integers are objects of class Fixnum or Bignum. Fixnum objects hold integers that
fit within the native machine word minus 1 bit. Whenever a Fixnum exceeds this range,
it is automatically converted to a Bignum object, whose range is effectively limited only
by available memory. If an operation with a Bignum result has a final value that will fit
in a Fixnum, the result will be returned as a Fixnum.

Integers are written using an optional leading sign, an optional base indicator (0 for
octal, 0x for hex, or 0b for binary), followed by a string of digits in the appropriate
base. Underscore characters are ignored in the digit string.

You can get the integer value corresponding to an ASCII character by preceding that
character with a question mark. Control and meta combinations of characters can also
be generated using ?\C-x, ?\M-x, and ?\M-\C-x. The control version of ch is ch& 0x9f,
and the meta version is ch | 0x80. You can get the integer value of a backslash char-
acter using the sequence ?\\.

123456 # Fixnum

123_456 # Fixnum (underscore ignored)

-543 # Negative Fixnum

123_456_789_123_345_789 # Bignum

0xaabb # Hexadecimal

0377 # Octal

-0b1010 # Binary (negated)

0b001_001 # Binary

?a # character code

?A # upper case

?\C-a # control a = A - 0x40

?\C-A # case ignored for control chars

?\M-a # meta sets bit 7

?\M-\C-a # meta and control a

A numeric literal with a decimal point and/or an exponent is turned into a Float object,
corresponding to the native architecture’s double data type. You must follow the deci-
mal point with a digit, as 1.e3 tries to invoke the method e3 in class Fixnum.

12.34 → 12.34

-.1234e2 → -12.34

1234e-2 → 12.34

184 CHAPTER 18. THE RUBY LANGUAGE

Strings

Ruby provides a number of mechanisms for creating literal strings. Each generates
objects of type String. The different mechanisms vary in terms of how a string is
delimited and how much substitution is done on the literal’s content.

Single-quoted string literals (’stuff’ and %q/stuff /) undergo the least substitution. Both
convert the sequence \\ into a single backslash, and the form with single quotes con-
verts \’ into a single quote.

’hello’ → hello

’a backslash \’\\\” → a backslash ’\’

%q/simple string/ → simple string

%q(nesting (really) works) → nesting (really) works

%q no_blanks_here ; → no_blanks_here

Double-quoted strings ("stuff ", %Q/stuff /, and %/stuff /) undergo additional substitu-
tions, shown in Table 18.2 on the facing page.

a = 123

"\123mile" → Smile

"Say \"Hello\"" → Say "Hello"

%Q!"I said ’nuts’," I said! → "I said ’nuts’," I said

%Q{Try #{a + 1}, not #{a - 1}} → Try 124, not 122

%<Try #{a + 1}, not #{a - 1}> → Try 124, not 122

"Try #{a + 1}, not #{a - 1}" → Try 124, not 122

Strings can continue across multiple input lines, in which case they will contain newline
characters. It is also possible to use here documents to express long string literals.
Whenever Ruby parses the sequence <<identifier or <<quoted string, it replaces it with
a string literal built from successive logical input lines. It stops building the string when
it finds a line that starts with the identifier or the quoted string. You can put a minus
sign immediately after the << characters, in which case the terminator can be indented
from the left margin. If a quoted string was used to specify the terminator, its quoting
rules will be applied to the here document; otherwise, double-quoting rules apply.

a = 123

print <<HERE

Double quoted \

here document.

Sum = #{a + 1}

HERE

print <<-’THERE’

This is single quoted.

The above used #{a + 1}

THERE

produces:

Double quoted here document.

Sum = 124

This is single quoted.

The above used #{a + 1}

Adjacent single- and double-quoted strings in the input are concatenated to form a
single String object.

THE BASIC TYPES 185

Table 18.2. Substitutions in double-quoted strings

\a Bell/alert (0x07) \nnn Octal nnn
\b Backspace (0x08) \xnn Hex nn
\e Escape (0x1b) \cx Control-x
\f Formfeed (0x0c) \C-x Control-x
\n Newline (0x0a) \M-x Meta-x
\r Return (0x0d) \M-\C-x Meta-control-x
\s Space (0x20) \x x
\t Tab (0x09) #{expr} Value of expr
\v Vertical tab (0x0b)

’Con’ "cat" ’en’ "ate" → "Concatenate"

Strings are stored as sequences of 8-bit bytes,2 and each byte may contain any of the
256 8-bit values, including null and newline. The substitution mechanisms in Table 18.2
allow nonprinting characters to be inserted conveniently and portably.

Every time a string literal is used in an assignment or as a parameter, a new String

object is created.

for i in 1..3

print ’hello’.id, " "

end

produces:

1878616 1878586 1878556

The documentation for class String starts on page 333.

Ranges
Outside the context of a conditional expression, expr..expr and expr...expr construct
Range objects. The two-dot form is an inclusive range; the one with three dots is a
range that excludes its last element. See the description of class Range on page 329 for
details. Also see the description of conditional expressions on page 201 for other uses
of ranges.

Arrays
Literals of class Array are created by placing a comma-separated series of object ref-
erences between square brackets. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

2. For use in Japan, the jcode library supports a set of operations of strings written with EUC, SJIS, or
UTF-8 encoding. The underlying string, however, is still accessed as a series of bytes.

186 CHAPTER 18. THE RUBY LANGUAGE

Arrays of strings can be constructed using a shortcut notation, %w, which extracts space-
separated tokens into successive elements of the array. A space can be escaped with a
backslash. This is a form of general delimited input, described on pages 182–183.

arr = %w(fred wilma barney betty great\ gazoo)

arr → ["fred", "wilma", "barney", "betty", "great gazoo"]

Hashes
A literal Ruby Hash is created by placing a list of key/value pairs between braces, with
either a comma or the sequence => between the key and the value. A trailing comma is
ignored.

colors = { "red" => 0xf00,

"green" => 0x0f0,

"blue" => 0x00f

}

There is no requirement for the keys and/or values in a particular hash to have the same
type.

Requirements for a Hash Key

The only restriction for a hash key is that it must respond to the message hash with a
hash value, and the hash value for a given key must not change. This means that certain
classes (such as Array and Hash, as of this writing) can’t conveniently be used as keys,
because their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key, and use that reference
to alter the object and change its hash value, the hash lookup based on that key may not
work.

Because strings are the most frequently used keys, and because string contents are often
changed, Ruby treats string keys specially. If you use a String object as a hash key, the
hash will duplicate the string internally and will use that copy as its key. Any changes
subsequently made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to
make sure that either (a) the hashes of the key objects don’t change once the objects
have been created or (b) you remember to call the Hash#rehashmethod to reindex the
hash whenever a key hash is changed.

Symbols
A Ruby symbol is the internal representation of a name. You construct the symbol for a
name by preceding the name with a colon. A particular name will always generate the
same symbol, regardless of how that name is used within the program.

:Object

:myVariable

Other languages call this process “interning,” and call symbols “atoms.”

THE BASIC TYPES 187

Regular Expressions
Regular expression literals are objects of type Regexp. They can be created by explic-
itly calling the Regexp.new constructor, or by using the literal forms, /pattern/ and
%r{pattern}. The %r construct is a form of general delimited input (described on pages
182–183).

/pattern/

/pattern/options
%r{pattern}

%r{pattern}options
Regexp.new(’pattern’ [, options])

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern
matches strings. If you’re using literals to create the Regexp object, then the options
comprise one or more characters placed immediately after the terminator. If you’re
using Regexp.new, the options are constants used as the second parameter of the con-
structor.

i Case Insensitive. The pattern match will ignore the case of letters in the pattern
and string. Matches are also case-insensitive if the global variable $= is set.

o Substitute Once. Any #... substitutions in a particular regular expression literal
will be performed just once, the first time it is evaluated. Otherwise, the substitu-
tions will be performed every time the literal generates a Regexp object.

m Multiline Mode. Normally, “.” matches any character except a newline. With the
/m option, “.” matches any character.

x Extended Mode. Complex regular expressions can be difficult to read. The ‘x’
option allows you to insert spaces, newlines, and comments in the pattern to make
it more readable.

Regular Expression Patterns
regular characters

All characters except ., |, (,), [, \, ^, {, +, $, *, and ? match themselves.
To match one of these characters, precede it with a backslash.

^ Matches the beginning of a line.

$ Matches the end of a line.

\A Matches the beginning of the string.

\z Matches the end of the string.

\Z Matches the end of the string unless the string ends with a “\n”, in
which case it matches just before the “\n”.

\b, \B Match word boundaries and nonword boundaries respectively.

[characters] A character class matches any single character between the brackets.
The characters |, (,), [, ^, $, *, and ?, which have special
meanings elsewhere in patterns, lose their special significance between

188 CHAPTER 18. THE RUBY LANGUAGE

brackets. The sequences \nnn, \xnn, \cx, \C-x, \M-x, and \M-\C-x
have the meanings shown in Table 18.2 on page 185. The sequences
\d, \D, \s, \S, \w, and \W are abbreviations for groups of characters,
as shown in Table 5.1 on page 56. The sequence c1-c2 represents all
the characters between c1 and c2, inclusive. Literal] or - characters
must appear immediately after the opening bracket. An uparrow (^)
immediately following the opening bracket negates the sense of the
match—the pattern matches any character that isn’t in the character
class.

\d, \s, \w Are abbreviations for character classes that match digits, whitespace,
and word characters, respectively. \D, \S, and \W match characters that
are not digits, whitespace, or word characters. These abbreviations are
summarized in Table 5.1 on page 56.

. (period) Appearing outside brackets, matches any character except a newline.
(With the /m option, it matches newline, too).

re* Matches zero or more occurrences of re.

re+ Matches one or more occurrences of re.

re{m,n} Matches at least “m” and at most “n” occurrences of re.

re? Matches zero or one occurrence of re. The *, +, and {m,n} modifiers
are greedy by default. Append a question mark to make them minimal.

re1|re2 Matches either re1 or re2. | has a low precedence.

(...) Parentheses are used to group regular expressions. For example, the
pattern /abc+/ matches a string containing an “a,” a “b,” and one
or more “c”s. /(abc)+/ matches one or more sequences of “abc”.
Parentheses are also used to collect the results of pattern matching. For
each opening parenthesis, Ruby stores the result of the partial match
between it and the corresponding closing parenthesis as successive
groups. Within the same pattern, \1 refers to the match of the first
group, \2 the second group, and so on. Outside the pattern, the special
variables $1, $2, and so on, serve the same purpose.

Substitutions

#{...} Performs an expression substitution, as with strings. By default, the
substitution is performed each time a regular expression literal is eval-
uated. With the /o option, it is performed just the first time.

\0, \1, \2, ... \9, \&, \‘, \’, \+

Substitutes the value matched by the nth grouped subexpression, or by
the entire match, pre- or postmatch, or the highest group.

Extensions

In common with Perl and Python, Ruby regular expressions offer some extensions over
traditional Unix regular expressions. All the extensions are entered between the char-

THE BASIC TYPES 189

acters (? and). The parentheses that bracket these extensions are groups, but they do
not generate backreferences: they do not set the values of \1 and $1 etc.

(?# comment)

Inserts a comment into the pattern. The content is ignored during pat-
tern matching.

(?:re) Makes re into a group without generating backreferences. This is often
useful when you need to group a set of constructs but don’t want the
group to set the value of $1 or whatever. In the example that follows,
both patterns match a date with either colons or spaces between the
month, day, and year. The first form stores the separator character in
$2 and $4, while the second pattern doesn’t store the separator in an
external variable.

date = "12/25/01"

date =~ %r{(\d+)(/|:)(\d+)(/|:)(\d+)}

[$1,$2,$3,$4,$5] → ["12", "/", "25", "/", "01"]

date =~ %r{(\d+)(?:/|:)(\d+)(?:/|:)(\d+)}

[$1,$2,$3] → ["12", "25", "01"]

(?=re) Matches re at this point, but does not consume it (also known charm-
ingly as “zero-width positive lookahead”). This lets you look forward
for the context of a match without affecting $&. In this example, the
scan method matches words followed by a comma, but the commas
are not included in the result.

str = "red, white, and blue"

str.scan(/[a-z]+(?=,)/) → ["red", "white"]

(?!re) Matches if re does not match at this point. Does not consume the match
(zero-width negative lookahead). For example, /hot(?!dog)(\w+)/
matches any word that contains the letters “hot” that aren’t followed
by “dog”, returning the end of the word in $1.

(?>re) Nests an independent regular expression within the first regular expres-
sion. This expression is anchored at the current match position. If it
consumes characters, these will no longer be available to the higher-
level regular expression. This construct therefore inhibits backtrack-
ing, which can be a performance enhancement. For example, the pat-
tern /a.*b.*a/ takes exponential time when matched against a string
containing an “a” followed by a number of “b”s, but with no trailing
“a.” However, this can be avoided by using a nested regular expres-
sion /a(?>.*b).*a/. In this form, the nested expression consumes
all the the input string up to the last possible “b” character. When the
check for a trailing “a” then fails, there is no need to backtrack, and the
pattern match fails promptly.

require "benchmark"

include Benchmark

str = "a" + ("b" * 5000)

bm(8) do |test|

test.report("Normal:") { str =~ /a.*b.*a/ }

test.report("Nested:") { str =~ /a(?>.*b).*a/ }

190 CHAPTER 18. THE RUBY LANGUAGE

end

produces:
user system total real

Normal: 1.570000 0.040000 1.610000 (1.586616)

Nested: 0.000000 0.000000 0.000000 (0.000871)

(?imx) Turns on the corresponding “i,” “m,” or “x” option. If used inside a
group, the effect is limited to that group.

(?-imx) Turns off the “i,” “m,” or “x” option.

(?imx:re) Turns on the “i,” “m,” or “x” option for re.

(?-imx:re) Turns off the “i,” “m,” or “x” option for re.

Names
Ruby names are used to refer to constants, variables, methods, classes, and modules.
The first character of a name helps Ruby to distinguish its intended use. Certain names,
listed in Table 18.3 on the next page, are reserved words and should not be used as
variable, method, class, or module names.

In these descriptions, lowercase letter means the characters “a” though “z”, as well
as “_”, the underscore. Uppercase letter means “A” though “Z,” and digit means “0”
through “9.” Name characters means any combination of upper- and lowercase letters
and digits.

A local variable name consists of a lowercase letter followed by name characters.

fred anObject _x three_two_one

An instance variable name starts with an “at” sign (“@”) followed by an upper- or low-
ercase letter, optionally followed by name characters.

@name @_ @Size

A class variable name starts with two “at” signs (“@@”) followed by an upper- or low-
ercase letter, optionally followed by name characters.

@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class
names and module names are constants, and follow the constant naming conventions.
By convention, constant variables are normally spelled using uppercase letters and
underscores throughout.

module Math

PI = 3.1415926

end

class BigBlob

Global variables, and some special system variables, start with a dollar sign (“$”) fol-
lowed by name characters. In addition, there is a set of two-character variable names in
which the second character is a punctuation character. These predefined variables are

NAMES 191

Table 18.3. Reserved words
__FILE__ and def end in or self unless

__LINE__ begin defined? ensure module redo super until

BEGIN break do false next rescue then when

END case else for nil retry true while

alias class elsif if not return undef yield

listed starting on page 194. Finally, a global variable name can be formed using “$-”
followed by any single character.

$params $PROGRAM $! $_ $-a $-.

Method names are described in the section beginning on page 204.

Variable/Method Ambiguity
When Ruby sees a name such as “a” in an expression, it needs to determine if it is a local
variable reference or a call to a method with no parameters. To decide which is the case,
Ruby uses a heuristic. As Ruby reads a source file, it keeps track of symbols that have
been assigned to. It assumes that these symbols are variables. When it subsequently
comes across a symbol that might be either a variable or a method call, it checks to see
if it has seen a prior assignment to that symbol. If so, it treats the symbol as a variable;
otherwise it treats it as a method call. As a somewhat pathological case of this, consider
the following code fragment, submitted by Clemens Hintze.

def a

print "Function ’a’ called\n"

99

end

for i in 1..2

if i == 2

print "a=", a, "\n"

else

a = 1

print "a=", a, "\n"

end

end

produces:
a=1

Function ’a’ called

a=99

During the parse, Ruby sees the use of “a” in the first print statement and, as it hasn’t
yet seen any assignment to “a,” assumes that it is a method call. By the time it gets to
the second print statement, though, it has seen an assignment, and so treats “a” as a
variable.

Note that the assignment does not have to be executed—Ruby just has to have seen it.
This program does not raise an error.

a = 1 if false; a

192 CHAPTER 18. THE RUBY LANGUAGE

Variables and Constants
Ruby variables and constants hold references to objects. Variables themselves do not
have an intrinsic type. Instead, the type of a variable is defined solely by the messages
to which the object referenced by the variable responds.3

A Ruby constant is also a reference to an object. Constants are created when they are
first assigned to (normally in a class or module definition). Ruby, unlike less flexible
languages, lets you alter the value of a constant, although this will generate a warning
message.

MY_CONST = 1

MY_CONST = 2 # generates a warning

produces:

prog.rb:2: warning: already initialized constant MY_CONST

Note that although constants should not be changed, you can alter the internal states of
the objects they reference.

MY_CONST = "Tim"

MY_CONST[0] = "J" # alter string referenced by constant

MY_CONST → "Jim"

Assignment potentially aliases objects, giving the same object different names.

Scope of Constants and Variables
Constants defined within a class or module may be accessed unadorned anywhere
within the class or module. Outside the class or module, they may be accessed using
the scope operator, “::” prefixed by an expression that returns the appropriate class
or module object. Constants defined outside any class or module may be accessed
unadorned or by using the scope operator “::” with no prefix. Constants may not be
defined in methods.

OUTER_CONST = 99

class Const

def getConst

CONST

end

CONST = OUTER_CONST + 1

end

Const.new.getConst → 100

Const::CONST → 100

::OUTER_CONST → 99

Global variables are available throughout a program. Every reference to a particu-
lar global name returns the same object. Referencing an uninitialized global variable
returns nil.

3. When we say that a variable is not typed, we mean that any given variable can at different times hold
references to objects of many different types.

VARIABLES AND CONSTANTS 193

Class variables are available throughout a class or module body. Class variables must
be initialized before use. A class variable is shared among all instances of a class and
is available within the class itself.

class Song

@@count = 0

def initialize

@@count += 1

end

def Song.getCount

@@count

end

end

Class variables belong to the innermost enclosing class or module. Class variables used
at the top level are defined in Object, and behave like global variables. Class variables
defined within singleton methods belong to the receiver if the receiver is a class or a
module; otherwise, they belong to the class of the receiver.

class Holder

@@var = 99

def Holder.var=(val)

@@var = val

end

end

a = Holder.new

def a.var

@@var

end

Holder.var = 123

a.var

Instance variables are available within instance methods throughout a class body. Ref-
erencing an uninitialized instance variable returns nil. Each instance of a class has a
unique set of instance variables. Instance variables are not available to class methods.

Local variables are unique in that their scopes are statically determined but their exis-
tence is established dynamically.

A local variable is created dynamically when it is first assigned a value during program
execution. However, the scope of a local variable is statically determined to be: the
immediately enclosing block, method definition, class definition, module definition, or
top-level program. Referencing a local variable that is in scope but that has not yet been
created generates a NameError exception.

Local variables with the same name are different variables if they appear in disjoint
scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked.

a = [1, 2, 3]

a.each { |i| puts i } # i local to block

a.each { |$i| puts $i } # assigns to global $i

a.each { |@i| puts @i } # assigns to instance variable @i

194 CHAPTER 18. THE RUBY LANGUAGE

a.each { |I| puts I } # generates warning assigning to constant

a.each { |b.meth| } # invokes meth= in object b

sum = 0

var = nil

a.each { |var| sum += var } # uses sum and var from enclosing scope

If a local variable (including a block parameter) is first assigned in a block, it is local to
the block. If instead a variable of the same name is already established at the time the
block executes, the block will inherit that variable.

A block takes on the set of local variables in existence at the time that it is created.
This forms part of its binding. Note that although the binding of the variables is fixed
at this point, the block will have access to the current values of these variables when it
executes. The binding preserves these variables even if the original enclosing scope is
destroyed.

The bodies of while, until, and for loops are part of the scope that contains them;
previously existing locals can be used in the loop, and any new locals created will be
available outside the bodies afterward.

Predefined Variables
The following variables are predefined in the Ruby interpreter. In these descriptions,
the notation [r/o] indicates that the variables are read-only; an error will be raised if a
program attempts to modify a read-only variable. After all, you probably don’t want to
change the meaning of true halfway through your program (except perhaps if you’re
a politician). Entries marked [thread] are thread local.

Many global variables look something like Snoopy swearing: $_, $!, $&, and so on.
This is for “historical” reasons, as most of these variable names come from Perl. If
you find memorizing all this punctuation difficult, you might want to have a look at the
library file called “English,” documented on page 406, which gives the commonly used
global variables more descriptive names.

In the tables of variables and constants that follow, we show the variable name, the type
of the referenced object, and a description.

Exception Information

$! Exception The exception object passed to raise. [thread]

$@ Array The stack backtrace generated by the last exception. See Kernel#caller
on page 377 for details. [thread]

Pattern Matching Variables

These variables (except $=) are set to nil after an unsuccessful pattern match.

$& String The string matched by the last successful pattern match. This variable is
local to the current scope. [r/o, thread]

$+ String The contents of the highest-numbered group matched in the last successful
pattern match. Thus, in "cat" =~/(c|a)(t|z)/, $+ will be set to “t”. This
variable is local to the current scope. [r/o, thread]

VARIABLES AND CONSTANTS 195

$‘ String The string preceding the match in the last successful pattern match. This
variable is local to the current scope. [r/o, thread]

$’ String The string following the match in the last successful pattern match. This
variable is local to the current scope. [r/o, thread]

$= Object If set to any value apart from nil or false, all pattern matches will be case
insensitive, string comparisons will ignore case, and string hash values will
be case insensitive.

$1 to $9 String The contents of successive groups matched in the last successful pattern
match. In "cat" =~/(c|a)(t|z)/, $1 will be set to “a” and $2 to “t”.
This variable is local to the current scope. [r/o, thread]

$~ MatchData An object that encapsulates the results of a successful pattern match. The
variables $&, $‘, $’, and $1 to $9 are all derived from $~. Assigning to $~

changes the values of these derived variables. This variable is local to the
current scope. [thread]

Input/Output Variables

$/ String The input record separator (newline by default). This is the value that rou-
tines such as Kernel#gets use to determine record boundaries. If set to
nil, gets will read the entire file.

$-0 String Synonym for $/.

$\ String The string appended to the output of every call to methods such as
Kernel#print and IO#write. The default value is nil.

$, String The separator string output between the parameters to methods such as
Kernel#print and Array#join. Defaults to nil, which adds no text.

$. Fixnum The number of the last line read from the current input file.

$; String The default separator pattern used by String#split. May be set from the
command line using the -F flag.

$< Object An object that provides access to the concatenation of the contents of all
the files given as command-line arguments, or $stdin (in the case where
there are no arguments). $< supports methods similar to a File object:
binmode, close, closed?, each, each_byte, each_line, eof, eof?,
file, filename, fileno, getc, gets, lineno, lineno=, pos, pos=,
read, readchar, readline, readlines, rewind, seek, skip, tell,
to_a, to_i, to_io, to_s, along with the methods in Enumerable. The
method file returns a File object for the file currently being read. This
may change as $< reads through the files on the command line. [r/o]

$> IO The destination of output for Kernel#print and Kernel#printf. The
default value is $stdout.

$_ String The last line read by Kernel#gets or Kernel#readline. Many string-
related functions in the Kernel module operate on $_ by default. The vari-
able is local to the current scope. [thread]

$defout IO Synonym for $>.

$-F String Synonym for $;.

$stderr IO The current standard error output.

$stdin IO The current standard input.

$stdout IO The current standard output.

196 CHAPTER 18. THE RUBY LANGUAGE

Execution Environment Variables

$0 String The name of the top-level Ruby program being executed. Typically this will
be the program’s filename. On some operating systems, assigning to this
variable will change the name of the process reported (for example) by the
ps(1) command.

$* Array An array of strings containing the command-line options from the invoca-
tion of the program. Options used by the Ruby interpreter will have been
removed. [r/o]

$" Array An array containing the filenames of modules loaded by require. [r/o]

$$ Fixnum The process number of the program being executed. [r/o]

$? Fixnum The exit status of the last child process to terminate. [r/o, thread]

$: Array An array of strings, where each string specifies a directory to be searched for
Ruby scripts and binary extensions used by the load and require methods.
The initial value is the value of the arguments passed via the -I command-
line option, followed by an installation-defined standard library location, fol-
lowed by the current directory (“.”). This variable may be set from within a
program to alter the default search path; typically, programs use $: << dir

to append dir to the path. [r/o]

$-a Object True if the -a option is specified on the command line. [r/o]

$-d Object Synonym for $DEBUG.

$DEBUG Object Set to true if the -d command-line option is specified.

__FILE__ String The name of the current source file. [r/o]

$F Array The array that receives the split input line if the -a command-line option is
used.

$FILENAME String The name of the current input file. Equivalent to $<.filename. [r/o]

$-i String If in-place edit mode is enabled (perhaps using the -i command-line
option), $-i holds the extension used when creating the backup file. If you
set a value into $-i, enables in-place edit mode. See page 126.

$-I Array Synonym for $:. [r/o]

$-K String Sets the multibyte coding system for strings and regular expressions. Equiv-
alent to the -K command-line option. See page 126.

$-l Object Set to true if the -l option (which enables line-end processing) is present
on the command line. See page 127. [r/o]

__LINE__ String The current line number in the source file. [r/o]

$LOAD_PATH Array A synonym for $:. [r/o]

$-p Object Set to true if the -p option (which puts an implicit while gets . . . end
loop around your program) is present on the command line. See page 127.
[r/o]

$SAFE Fixnum The current safe level (see page 232). This variable’s value may never be
reduced by assignment. [thread]

$VERBOSE Object Set to true if the -v, --version, or -w option is specified on the command
line. Setting this option to true causes the interpreter and some library rou-
tines to report additional information.

VARIABLES AND CONSTANTS 197

$-v Object Synonym for $VERBOSE.

$-w Object Synonym for $VERBOSE.

Standard Objects

ARGF Object A synonym for $<.

ARGV Array A synonym for $*.

ENV Object A hash-like object containing the program’s environment variables. An
instance of class Object, ENV implements the full set of Hash meth-
ods. Used to query and set the value of an environment variable, as in
ENV["PATH"] and ENV[’term’]="ansi".

false FalseClass Singleton instance of class FalseClass. [r/o]

nil NilClass The singleton instance of class NilClass. The value of uninitialized
instance and global variables. [r/o]

self Object The receiver (object) of the current method. [r/o]

true TrueClass Singleton instance of class TrueClass. [r/o]

Global Constants

The following constants are defined by the Ruby interpreter.

DATA IO If the the main program file contains the directive __END__, then
the constant DATA will be initialized so that reading from it will
return lines following __END__ from the source file.

FALSE FalseClass Synonym for false.

NIL NilClass Synonym for nil.

RUBY_PLATFORM String The identifier of the platform running this program. This string
is in the same form as the platform identifier used by the GNU
configure utility (which is not a coincidence).

RUBY_RELEASE_DATE String The date of this release.

RUBY_VERSION String The version number of the interpreter.

STDERR IO The actual standard error stream for the program. The initial
value of $stderr.

STDIN IO The actual standard input stream for the program. The initial
value of $stdin.

STDOUT IO The actual standard output stream for the program. The initial
value of $stdout.

TOPLEVEL_BINDING Binding A Binding object representing the binding at Ruby’s top
level—the level where programs are initially executed.

TRUE TrueClass Synonym for true.

198 CHAPTER 18. THE RUBY LANGUAGE

Expressions
Single Terms
Single terms in an expression may be any of the following.

• Literal. Ruby literals are numbers, strings, arrays, hashes, ranges, symbols, and
regular expressions. There are described starting on page 183.

• Shell Command. A shell command is a string enclosed in backquotes, or in a
general delimited string (page 182) starting with %x. The value of the string is the
standard output of running the command represented by the string under the host
operating system’s standard shell. The execution also sets the $? variable with the
command’s exit status.

filter = "*.c"

files = `ls #{filter}`

files = %x{ls #{filter}}

• Symbol Generator. A Symbol object is created by prefixing an operator, variable,
constant, method, class, or module name with a colon. The symbol object will be
unique for each different name but does not refer to a particular instance of the
name, so the symbol for (say) :fred will be the same regardless of context. A
symbol is similar to the concept of atoms in other high-level languages.

• Variable Reference or Constant Reference. A variable is referenced by citing
its name. Depending on scope (see page 192), a constant is referenced either by
citing its name or by qualifying the name, using the name of the class or module
containing the constant and the scope operator (“::”).

barney # variable reference

APP_NAMR # constant reference

Math::PI # qualified constant reference

• Method Invocation. The various ways of invoking a method are described starting
on page 206.

Operator Expressions
Expressions may be combined using operators. Table 18.4 on the facing page lists the
Ruby operators in precedence order. The operators with a 3 in the method column are
implemented as methods, and may be overridden.

More on Assignment
The assignment operator assigns one or more rvalues to one or more lvalues. What is
meant by assignment depends on each individual lvalue.

If an lvalue is a variable or constant name, that variable or constant receives a reference
to the corresponding rvalue.

a, b, c = 1, "cat", [3, 4, 5]

EXPRESSIONS 199

Table 18.4. Ruby operators (high to low precedence)

Method Operator Description

3 [] []= Element reference, element set
3 ** Exponentiation
3 ! ~ + – Not, complement, unary plus and minus

(method names for the last two are +@ and
-@)

3 * / % Multiply, divide, and modulo
3 + – Plus and minus
3 >> << Right and left shift
3 & Bitwise ‘and’
3 ^ | Bitwise exclusive ‘or’ and regular ‘or’
3 <= < > >= Comparison operators
3 <=> == === != =~ !~ Equality and pattern match operators (!=

and !~ may not be defined as methods)
&& Logical ‘and’
|| Logical ‘or’
.. ... Range (inclusive and exclusive)
? : Ternary if-then-else
= %= ~= /= –= += |=

&= >>= <<= *= &&= ||=

**=

Assignment

defined? Check if symbol defined
not Logical negation
or and Logical composition
if unless while until Expression modifiers
begin/end Block expression

If the lvalue is an object attribute, the corresponding attribute setting method will be
called in the receiver, passing as a parameter the rvalue.

anObj = A.new

anObj.value = "hello" # equivalent to anObj.value=("hello")

If the lvalue is an array element reference, Ruby calls the element assignment operator
(“[]=”) in the receiver, passing as parameters any indices that appear between the
brackets followed by the rvalue. This is illustrated in Table 18.5 on the next page.

Parallel Assignment

An assignment expression may have one or more lvalues and one or more rvalues.
This section explains how Ruby handles assignment with different combinations of
arguments.

1. If the last rvalue is prefixed with an asterisk and is an object of class Array, the
rvalue is replaced with the elements of the array, with each element forming its
own rvalue.

200 CHAPTER 18. THE RUBY LANGUAGE

Table 18.5. Mapping from element reference to method call

Element Reference Actual Method Call

anObj[] = "one" anObj.[]=("one")

anObj[1] = "two" anObj.[]=(1, "two")

anObj["a", /^cat/] = "three" anObj.[]=("a", /^cat/, "three")

2. If the assignment contains multiple lvalues and one rvalue, the rvalue is converted
into an Array, and this array is expanded into a set of rvalues as described in (1).

3. Successive rvalues are assigned to the lvalues. This assignment effectively hap-
pens in parallel, so that (for example) a,b=b,a swaps the values in “a” and “b.”

4. If there are more lvalues than rvalues, the excess will have nil assigned to them.

5. If there are more rvalues that lvalues, the excess will be ignored.

6. These rules are modified slightly if the last lvalue is preceded with an asterisk. This
lvalue will always receive an array during the assignment. The array will consist
of whatever rvalue would normally have been assigned to this lvalue, followed by
the excess rvalues (if any).

7. If an lvalue is a parenthesized list, it is treated as a nested assignment statement,
and the list is assigned from the corresponding rvalue as described by these rules.

The tutorial has examples starting on page 70.

Block Expressions
begin

body
end

Expressions may be grouped between begin and end. The value of the block expres-
sion is the value of the last expression executed.

Block expressions also play a role in exception handling, which is discussed starting
on page 213.

Boolean Expressions
Boolean expressions evaluate to a truth value. Some Ruby constructs (particularly
ranges) behave differently when evaluated in a boolean expression.

Truth Values

Ruby predefines the globals false and nil. Both of these values are treated as being
false in a boolean context. All other values are treated as being true.

EXPRESSIONS 201

And, Or, Not, and Defined?

The and and && operators evaluate their first operand. If false, the expression returns
false; otherwise, the expression returns the value of the second operand.

expr1 and expr2
expr1 && expr2

The or and || operators evaluate their first operand. If true, the expression returns true;
otherwise, the expression returns the value of the second operand.

expr1 or expr2
expr1 || expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If
false, the expression returns true.

The word forms of these operators (and, or, and not) have a lower precedence than the
corresponding symbol forms (&&, ||, and !). See Table 18.4 on page 199 for details.

The defined? operator returns nil if its argument, which can be an arbitrary expres-
sion, is not defined. Otherwise, it returns a description of that argument. For examples,
see page 73 in the tutorial.

Comparison Operators

The Ruby syntax defines the comparison operators ==, ===, <=>, <, <=, >, >=, =~, and
the standard methods eql? and equal? (see Table 7.1 on page 74). All of these oper-
ators are implemented as methods. Although the operators have intuitive meaning, it
is up to the classes that implement them to produce meaningful comparison semantics.
The library reference starting on page 251 describes the comparison semantics for the
built-in classes. The module Comparable provides support for implementing the oper-
ators ==, <, <=, >, >=, and the method between? in terms of <=>. The operator === is
used in case expressions, described on page 203.

Both == and =~ have negated forms, != and !~. Ruby converts these during syntax
analysis: a != b is mapped to !(a == b), and a !~ b is mapped to !(a =~ b). There
are no methods corresponding to != and !~.

Ranges in Boolean Expressions
if expr1 .. expr2
while expr1 ... expr2

A range used in a boolean expression acts as a flip-flop. It has two states, set and unset,
and is initially unset. On each call, the range cycles through the state machine shown
in Figure 18.1 on page 203. The range returns true if it is in the set state at the end of
the call, and false otherwise.

The two-dot form of a range behaves slightly differently than the three-dot form. When
the two-dot form first makes the transition from unset to set, it immediately evaluates
the end condition and makes the transition accordingly. This means that if expr1 and
expr2 both evaluate to true on the same call, the two-dot form will finish the call in
the unset state. However, it still returns true for this call.

202 CHAPTER 18. THE RUBY LANGUAGE

The difference is illustrated by the following code:

a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}

a → [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}

a → [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions

If a single regular expression appears as a boolean expression, it is matched against the
current value of the variable $_.

if /re/ ...

is equivalent to

if $_ =~ /re/ ...

If and Unless Expressions
if boolean-expression [then]

body
elsif boolean-expression [then]

body
else

body
end

unless boolean-expression [then]
body

else

body
end

The then keyword separates the body from the condition. It is not required if the body
starts on a new line. The value of an if or unless expression is the value of the last
expression evaluated in whichever body is executed.

If and Unless Modifiers

expression if boolean-expression
expression unless boolean-expression

evaluates expression only if boolean-expression is true (false for unless).

Ternary Operator
boolean-expression ? expr1 : expr2

returns expr1 if boolean expression is true and expr2 otherwise.

EXPRESSIONS 203

Figure 18.1. State transitions for boolean range

start unset set

expr1 is true

expr2 is true
expr1 is false expr2 is false

Case Expressions
case target

when comparison [, comparison]... [then]
body

when comparison [, comparison]... [then]
body

...

[else

body]
end

A case expression searches for a match by starting at the first (top left) comparison,
performing comparison === target. When a comparison returns true, the search stops,
and the body associated with the comparison is executed. case then returns the value
of the last expression executed. If no comparison matches: if an else clause is present,
its body will be executed; otherwise, case silently returns nil.

The then keyword separates the when comparisons from the bodies, and is not needed
if the body starts on a new line.

Loops
while boolean-expression [do]

body
end

executes body zero or more times as long as boolean-expression is true.

until boolean-expression [do]
body

end

executes body zero or more times as long as boolean-expression is false.

In both forms, the do separates boolean-expression from the body, and may be omitted
when the body starts on a new line.

for name [, name]... in expression [do]
body

end

204 CHAPTER 18. THE RUBY LANGUAGE

The for loop is executed as if it were the following each loop, except that local vari-
ables defined in the body of the for loop will be available outside the loop, while those
defined within an iterator block will not.

expression.each do | name [, name]... |

body
end

loop, which iterates its associated block, is not a language construct—it is a method in
module Kernel.

While and Until Modifiers
expression while boolean-expression
expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or
more times while boolean-expression is true (false for until).

If expression is a begin/end block, the block will always be executed at least one time.

Break, Redo, Next, and Retry
break, redo, next, and retry alter the normal flow through a while, until, for, or
iterator controlled loop.

break terminates the immediately enclosing loop—control resumes at the statement
following the block. redo repeats the loop from the start, but without reevaluating the
condition or fetching the next element (in an iterator). next skips to the end of the
loop, effectively starting the next iteration. retry restarts the loop, reevaluating the
condition.

Method Definition
def defname [([arg [=val], ...] [, *vararg] [, &blockarg])]

body
end

defname is both the name of the method and optionally the context in which it is valid.

defname ← methodname
expr.methodname

A methodname is either a redefinable operator (see Table 18.4 on page 199) or a name.
If methodname is a name, it should start with a lowercase letter (or underscore) option-
ally followed by upper- and lowercase letters, underscores, and digits. A methodname
may optionally end with a question mark (“?”), exclamation point (“!”), or equals sign
(“=”). The question mark and exclamation point are simply part of the name. The equals
sign is also part of the name but additionally signals that this method is an attribute set-
ter (described on page 22).

A method definition using an unadorned method name within a class or module defini-
tion creates an instance method. An instance method may be invoked only by sending

METHOD DEFINITION 205

its name to a receiver that is an instance of the class that defined it (or one of that class’s
subclasses).

Outside a class or module definition, a definition with an unadorned method name is
added as a private method to class Object, and hence may be called in any context
without an explicit receiver.

A definition using a method name of the form expr.methodname creates a method asso-
ciated with the object that is the value of the expression; the method will be callable
only by supplying the object referenced by the expression as a receiver. Other Ruby
documentation calls these methods singleton methods.

class MyClass

def MyClass.method # definition

end

end

MyClass.method # call

anObject = Object.new

def anObject.method # definition

end

anObject.method # call

def (1.class).fred # receiver may be an expression

end

Fixnum.fred # call

Method definitions may not contain class, module, or instance method definitions. They
may contain nested singleton method definitions. The body of a method acts as if it
were a begin/end block, in that it may contain exception handling statements (rescue,
else, and ensure).

Method Arguments
A method definition may have zero or more regular arguments, an optional array argu-
ment, and an optional block argument. Arguments are separated by commas, and the
argument list may be enclosed in parentheses.

A regular argument is a local variable name, optionally followed by an equals sign and
an expression giving a default value. The expression is evaluated at the time the method
is called. The expressions are evaluated from left to right. An expression may reference
a parameter that precedes it in the argument list.

def options(a=99, b=a+1)

[a, b]

end

options → [99, 100]

options 1 → [1, 2]

options 2, 4 → [2, 4]

The optional array argument must follow any regular arguments and may not have
a default. When the method is invoked, Ruby sets the array argument to reference a
new object of class Array. If the method call specifies any parameters in excess of
the regular argument count, all these extra parameters will be collected into this newly
created array.

206 CHAPTER 18. THE RUBY LANGUAGE

def varargs(a, *b)

[a, b]

end

varargs 1 → [1, []]

varargs 1, 2 → [1, [2]]

varargs 1, 2, 3 → [1, [2, 3]]

If an array argument follows arguments with default values, parameters will first be
used to override the defaults. The remainder will then be used to populate the array.

def mixed(a, b=99, *c)

[a, b, c]

end

mixed 1 → [1, 99, []]

mixed 1, 2 → [1, 2, []]

mixed 1, 2, 3 → [1, 2, [3]]

mixed 1, 2, 3, 4 → [1, 2, [3, 4]]

The optional block argument must be the last in the list. Whenever the method is called,
Ruby checks for an associated block. If a block is present, it is converted to an object
of class Proc and assigned to the block argument. If no block is present, the argument
is set to nil.

Invoking a Method

[receiver.] name [parameters] [block]
[receiver::] name [parameters] [block]

parameters ← ([param, ...] [, hashlist] [*array] [&aProc])

block ← { blockbody }

do blockbody end

Initial parameters are assigned to the actual arguments of the method. Following these
parameters may be a list of key => value pairs. These pairs are collected into a single
new Hash object and passed as a single parameter.

Following these parameters may be a single parameter prefixed with an asterisk. If this
parameter is an array, Ruby replaces it with zero or more parameters corresponding to
the elements of the array.

def regular(a, b, *c)

..

end

regular 1, 2, 3, 4

regular(1, 2, 3, 4)

regular(1, *[2, 3, 4])

A block may be associated with a method call using either a literal block (which must
start on the same source line as the last line of the method call) or a parameter con-
taining a reference to a Proc or Method object prefixed with an ampersand character.
Regardless of the presence of a block argument, Ruby arranges for the value of the

INVOKING A METHOD 207

global function Kernel.block_given? to reflect the availability of a block associ-
ated with the call.

aProc = proc { 99 }

anArray = [98, 97, 96]

def block

yield

end

block { }

block do

end

block(&aProc)

def all(a, b, c, *d, &e)

puts "a = #{a}"

puts "b = #{b}"

puts "c = #{c}"

puts "d = #{d}"

puts "block = #{yield(e)}"

end

all(’test’, 1 => ’cat’, 2 => ’dog’, *anArray, &aProc)

produces:

a = test

b = {1=>"cat", 2=>"dog"}

c = 98

d = [97, 96]

block = 99

A method is called by passing its name to a receiver. If no receiver is specified, self
is assumed. The receiver checks for the method definition in its own class and then
sequentially in its ancestor classes. The instance methods of included modules act as
if they were in anonymous superclasses of the class that includes them. If the method
is not found, Ruby invokes the method method_missing in the receiver. The default
behavior defined in Kernel.method_missing is to report an error and terminate the
program.

When a receiver is explicitly specified in a method invocation, it may be separated from
the method name using either a period “.” or two colons “::”. The only difference
between these two forms occurs if the method name starts with an uppercase letter.
In this case, Ruby will assume that a receiver::Thing method call is actually an
attempt to access a constant called Thing in the receiver unless the method invocation
has a parameter list between parentheses.

Foo.Bar() # method call

Foo.Bar # method call

Foo::Bar() # method call

Foo::Bar # constant access

The return value of a method is the value of the last expression executed.

return [expr, ...]

208 CHAPTER 18. THE RUBY LANGUAGE

A return expression immediately exits a method. The value of a return is nil if it is
called with no parameters, the value of its parameter if it is called with one parameter,
or an array containing all of its parameters if it is called with more than one parameter.

super
super [([param, ...] [*array])] [block]

Within the body of a method, a call to super acts just like a call to that original method,
except that the search for a method body starts in the superclass of the object that was
found to contain the original method. If no parameters (and no parentheses) are passed
to super, the original method’s parameters will be passed; otherwise, the parameters
to super will be passed.

Operator Methods
expr1 operator
operator expr1
expr1 operator expr2

If the operator in an operator expression corresponds to a redefinable method (see the
Table 18.4 on page 199), Ruby will execute the operator expression as if it had been
written

(expr1).operator(expr2)

Attribute Assignment
receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue, Ruby invokes a method named
attrname= in the receiver, passing rvalue as a single parameter.

Element Reference Operator
receiver[expr [, expr]...]

receiver[expr [, expr]...] = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver,
passing as parameters the expressions between the brackets.

When used as an lvalue, element reference invokes the method []= in the receiver,
passing as parameters the expressions between the brackets, followed by the rvalue
being assigned.

Aliasing
alias newName oldName

CLASS DEFINITION 209

creates a new name that refers to an existing method, operator, global variable, or reg-
ular expression backreference ($&, $’, $’, and $+). Local variables, instance variables,
class variables, and constants may not be aliased. The parameters to alias may be
names or symbols.

class Fixnum

alias plus +

end

1.plus(3) → 4

alias $prematch $`

"string" =~ /i/ → 3

$prematch → "str"

alias :cmd :`

cmd "date" → "Thu Dec 26 20:04:47 MSK 2002\n"

When a method is aliased, the new name refers to a copy of the original method’s body.
If the method is subsequently redefined, the aliased name will still invoke the original
implementation.

def meth

"original method"

end

alias original meth

def meth

"new and improved"

end

meth → "new and improved"

original → "original method"

Class Definition
class classname [< superexpr]

body
end

class << anObject
body

end

A Ruby class definition creates or extends an object of class Class by executing the
code in body. In the first form, a named class is created or extended. The resulting
Class object is assigned to a global constant named classname. This name should
start with an uppercase letter. In the second form, an anonymous (singleton) class is
associated with the specific object.

If present, superexpr should be an expression that evaluates to a Class object that will
be installed as the superclass of the class being defined. If omitted, it defaults to class
Object.

210 CHAPTER 18. THE RUBY LANGUAGE

Within body, most Ruby expressions are simply executed as the definition is read. How-
ever:

• Method definitions will register the methods in a table in the class object.

• Nested class and module definitions will be stored in constants within the class,
not as global constants. These nested classes and modules can be accessed from
outside the defining class using “::” to qualify their names.

module NameSpace

class Example

CONST = 123

end

end

obj = NameSpace::Example.new

a = NameSpace::Example::CONST

• The Module#includemethod will add the named modules as anonymous super-
classes of the class being defined.

It is worth emphasizing that a class definition is executable code. Many of the directives
used in class definition (such as attr and include) are actually simply private instance
methods of class Module (documented starting on page 314).

Chapter 19, which begins on page 217, describes in more detail how Class objects
interact with the rest of the environment.

Creating Objects from Classes
obj = classexpr.new [([args, ...])]

Class Class defines the instance method Class#new, which:

• Creates an object of the class of the receiver (classexpr in the syntax example).

• Sets that object’s type to be the receiver.

• Invokes the instance method initialize in the newly created object, passing it
any arguments originally passed to new.

If a class definition overrides the class method new without calling super, no objects
of that class can be created.

Class Attribute Declarations
Class attribute declarations are technically not part of the Ruby language: they are
simply methods defined in class Module that create accessor methods automatically.

class name
attr attribute [, writable]
attr_reader attribute [, attribute]...
attr_writer attribute [, attribute]...
attr_accessor attribute [, attribute]...

end

MODULE DEFINITIONS 211

Module Definitions
module name

body
end

A module is basically a class that cannot be instantiated. Like a class, its body is
executed during definition and the resulting Module object is stored in a constant. A
module may contain class and instance methods and may define constants and class
variables. As with classes, module methods are invoked using the Module object as a
receiver, and constants are accessed using the “::” scope resolution operator.

module Mod

CONST = 1

def Mod.method1 # module method

CONST + 1

end

end

Mod::CONST → 1

Mod.method1 → 2

Mixins—Including Modules
class|module name

include expr
end

A module may be included within the definition of another module or class using the
include method. The module or class definition containing the include gains access
to the constants, class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class variables,
and instance methods are effectively bundled into an anonymous (and inaccessible)
superclass for that class. In particular, objects of the class will respond to messages
sent to the module’s instance methods.

A module may also be included at the top level, in which case the module’s constants,
class variables, and instance methods become available at the top level.

Module Functions

Although include is useful for providing mixin functionality, it is also a way of bring-
ing the constants, class variables, and instance methods of a module into another name-
space. However, functionality defined in an instance method will not be available as a
module method.

module Math

def sin(x)

#

end

end

Only way to access Math.sin is...

include Math

sin(1)

212 CHAPTER 18. THE RUBY LANGUAGE

The method Module#module_function solves this problem by taking one or more
module instance methods and copying their definitions into corresponding module
methods.

module Math

def sin(x)

#

end

module_function :sin

end

Math.sin(1)

include Math

sin(1)

The instance method and module method are two different methods: the method defi-
nition is copied by module_function, not aliased.

Access Control
Ruby defines three levels of protection for module and class constants and methods:

• Public. Accessible to anyone.

• Protected. Can be invoked only by objects of the defining class and its subclasses.

• Private. Can be called only in functional form (that is, with an implicit self as
the receiver). Private methods therefore can be called only in the defining class
and by direct descendents within the same object.

private [aSymbol, ...]
protected [aSymbol, ...]
public [aSymbol, ...]

Each function can be used in two different ways.

1. If used with no arguments, the three functions set the default access control of
subsequently defined methods.

2. With arguments, the functions set the access control of the named methods and
constants.

Access control is enforced when a method is invoked.

Blocks, Closures, and Proc Objects
A code block is a set of Ruby statements and expressions between braces or a do/end
pair. The block may start with an argument list between vertical bars. A code block
may appear only immediately after a method invocation. The start of the block must be
on the same logical line as the end of the invocation.

invocation do | a1, a2, ... |

end

EXCEPTIONS 213

invocation { | a1, a2, ... |

}

Braces have a high precedence; do has a low precedence. If the method invocation has
parameters that are not enclosed in parentheses, the brace form of a block will bind to
the last parameter, not to the overall invocation. The do form will bind to the invocation.

Within the body of the invoked method, the code block may be called using the yield
method. Parameters passed to the yield will be assigned to arguments in the block
using the rules of parallel assignment described starting on page 199. The return value
of the yield is the value of the last expression evaluated in the block.

A code block remembers the environment in which it was defined, and it uses that
environment whenever it is called.

Proc Objects
Code blocks are converted into objects of class Proc using the methods Proc.new and
Kernel#proc, or by associating the block with a method’s block argument.

The Proc constructor takes an associated block and wraps it with enough context
to be able to re-create the block’s environment when it is subsequently called. The
Proc#call instance method then allows you to invoke the original block, optionally
passing in parameters. The code in the block (and the associated closure) remains avail-
able for the lifetime of the Proc object.

If the last argument in a method’s argument list is prefixed with an ampersand (“&”),
any block associated with calls to that method will be converted to a Proc object and
assigned to that parameter.

Exceptions
Ruby exceptions are objects of class Exception and its descendents (a full list of the
built-in exceptions is given in Figure 22.1 on page 274).

Raising Exceptions
The Kernel.raisemethod raises an exception.

raise

raise aString
raise thing [, aString [aStackTrace]]

The first form reraises the exception in $! or a new RuntimeError if $! is nil. The
second form creates a new RuntimeError exception, setting its message to the given
string. The third form creates an exception object by invoking the method exception

on its first argument. It then sets this exception’s message and backtrace to its second
and third arguments. Class Exception and objects of class Exception contain factory

214 CHAPTER 18. THE RUBY LANGUAGE

methods called exception, so an exception class name or instance can be used as the
first parameter to raise.

When an exception is raised, Ruby places a reference to the Exception object in the
global variable $!.

Handling Exceptions
Exceptions may be handled within the scope of a begin/end block.

begin

code...
code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else

no exception code...]
[ensure

always executed code...]
end

A block may have multiple rescue clauses, and each rescue clause may specify zero
or more parameters. A rescue clause with no parameter is treated as if it had a param-
eter of StandardError.

When an exception is raised, Ruby scans up the call stack until it finds an enclosing
begin/end block. For each rescue clause in that block, Ruby compares the raised
exception against each of the rescue clause’s parameters in turn; each parameter is
tested using $!.kind_of?(parameter). If the raised exception matches a rescue

parameter, Ruby executes the body of the rescue and stops looking. If a matching
rescue clause ends with => and a variable name, the variable is set to $!.

Although the parameters to the rescue clause are typically the names of Exception
classes, they can actually be arbitrary expressions (including method calls) that return
an appropriate class.

If no rescue clause matches the raised exception, Ruby moves up the stack frame look-
ing for a higher-level begin/end block that matches. If an exception propagates to the
top level without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if no exceptions were raised in initial
code. Exceptions raised during the execution of the else clause are not captured by
rescue clauses in the same block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even
if an uncaught exception is in the process of being propagated).

Retrying a Block

The retry statement can be used within a rescue clause to restart the enclosing
begin/end block from the beginning.

CATCH AND THROW 215

Catch and Throw
The method Kernel.catch executes its associated block.

catch (aSymbol | aString) do

block...
end

The method Kernel.throw interrupts the normal processing of statements.

throw(aSymbol | aString [, anObject])

When a throw is executed, Ruby searches up the call stack for the first catch block
with a matching symbol or string. If it is found, the search stops, and execution resumes
past the end of the catch’s block. If the throw was passed a second parameter, that
value is returned as the value of the catch. Ruby honors the ensure clauses of any
block expressions it traverses while looking for a corresponding catch.

If no catch block matches the throw, Ruby raises a NameError exception at the loca-
tion of the throw.

Chapter 19

Classes and Objects

Classes and objects are obviously central to Ruby, but at first sight they can seem a little
confusing. There seem to be a lot of concepts: classes, objects, class objects, instance
methods, class methods, and singleton classes. In reality, however, Ruby has just a
single underlying class and object structure, which we’ll discuss in this chapter. In fact,
the basic model is so simple, we can describe it in a single paragraph.

A Ruby object has three components: a set of flags, some instance variables, and an
associated class. A Ruby class is an object of class Class, which contains all the object
things plus a list of methods and a reference to a superclass (which is itself another
class). All method calls in Ruby nominate a receiver (which is by default self, the
current object). Ruby finds the method to invoke by looking at the list of methods in
the receiver’s class. If it doesn’t find the method there, it looks in the superclass, and
then in the superclass’s superclass, and so on. If the method cannot be found in the
receiver’s class or any of its ancestors, Ruby invokes the method method_missing on
the original receiver.

And that’s it—the entire explanation. On to the next chapter.

“But wait,” you cry, “I spent good money on this chapter. What about all this other
stuff—singleton classes, class methods, and so on. How do they work?”

Good question.

How Classes and Objects Interact
All class/object interactions are explained using the simple model given above: objects
reference classes, and classes reference zero or more superclasses. However, the imple-
mentation details can get a tad tricky.

We’ve found that the simplest way of visualizing all this is to draw the actual objects
that Ruby implements. So, in the following pages we’ll look at all the possible combi-
nations of classes and objects. Note that these are not class diagrams in the UML sense;
we’re showing structures in memory and pointers between them.

217

218 CHAPTER 19. CLASSES AND OBJECTS

Your Basic, Everyday Object

Let’s start by looking at an object created from a simple class. Figure 19.1 on the facing
page shows an object referenced by a variable, lucille, the object’s class, Guitar,
and that class’s superclass, Object. Notice how the object’s class reference (called
klass for historical reasons that really bug Andy) points to the class object, and how
the super pointer from that class references the parent class.

If we invoke the method lucille.play(), Ruby goes to the receiver, lucille, and
follows the klass reference to the class object for Guitar. It searches the method
table, finds play, and invokes it.

If instead we call lucille.display(), Ruby starts off the same way, but cannot find
display in the method table in class Guitar. It then follows the super reference to
Guitar’s superclass, Object, where it finds and executes the method.

What’s the Meta?

Astute readers (yup, that’s all of you) will have noticed that the klass members of
Class objects point to nothing meaningful in Figure 19.1. We now have all the infor-
mation we need to work out what they should reference.

When you say lucille.play(), Ruby follows lucille’s klass pointer to find a
class object in which to search for methods. So what happens when you invoke a class
method, such as Guitar.strings(...)? Here the receiver is the class object itself,
Guitar. So, to be consistent, we need to stick the methods in some other class, refer-
enced from Guitar’s klass pointer. This new class will contain all of Guitar’s class
methods. It’s called a metaclass. We’ll denote the metaclass of Guitar as Guitar′.
But that’s not the whole story. Because Guitar is a subclass of Object, its meta-
class Guitar′ will be a subclass of Object’s metaclass, Object′. In Figure 19.2 on
page 220, we show these additional metaclasses.

When Ruby executes Guitar.strings(), it follows the same process as before: it
goes to the receiver, class Guitar, follows the klass reference to class Guitar′, and
finds the method.

Finally, note that an “S” has crept into the flags in class Guitar′. The classes that Ruby
creates automatically are marked internally as singleton classes. Singleton classes are
treated slightly differently within Ruby. The most obvious difference from the outside
is that they are effectively invisible: they will never appear in a list of objects returned
from methods such as Module#ancestors or ObjectSpace.each_object.

Object-Specific Classes

Ruby allows you to create a class tied to a particular object. In the following example,
we create two String objects. We then associate an anonymous class with one of them,
overriding one of the methods in the object’s base class and adding a new method.

HOW CLASSES AND OBJECTS INTERACT 219

Figure 19.1. A basic object, with its class and superclass

class Guitar
def play()

...
end
...

end

lucille = Guitar.new
lucille

flags: ...
iv_tbl:
klass:

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- play

Class
Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

a = "hello"

b = a.dup

class <<a

def to_s

"The value is ’#{self}’"

end

def twoTimes

self + self

end

end

a.to_s → "The value is ’hello’"

a.twoTimes → "hellohello"

b.to_s → "hello"

This example uses the “class <<obj ” notation, which basically says “build me a new
class just for object obj.” We could also have written it as:

a = "hello"

b = a.dup

def a.to_s

"The value is ’#{self}’"

end

def a.twoTimes

self + self

end

a.to_s → "The value is ’hello’"

a.twoTimes → "hellohello"

b.to_s → "hello"

220 CHAPTER 19. CLASSES AND OBJECTS

Figure 19.2. Adding a metaclass to Guitar

class Guitar
def Guitar.strings()

return 6
end
def play()

...
end
...

end

lucille = Guitar.new

lucille
flags: ...

iv_tbl:
klass:

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- play

Class
Guitar

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

flags: S
super:
iv_tbl:
klass:

methods:
- strings

Class
Guitar′

flags: S
super:
iv_tbl:
klass:

methods:

Class
Object′

The effect is the same in both cases: a class is added to the object “a”. This gives us
a strong hint about the Ruby implementation: a singleton class is created and inserted
as a’s direct class. a’s original class, String, is made this singleton’s superclass. The
before and after pictures are shown in Figure 19.3 on the facing page.

Ruby performs a slight optimization with these singleton classes. If an object’s klass
reference already points to a singleton class, a new one will not be created. This means
that the first of the two method definitions in the previous example will create a single-
ton class, but the second will simply add a method to it.

Mixin Modules
When a class includes a module, that module’s instance methods become available as
instance methods of the class. It’s almost as if the module becomes a superclass of
the class that uses it. Not surprisingly, that’s about how it works. When you include
a module, Ruby creates an anonymous proxy class that references that module, and
inserts that proxy as the direct superclass of the class that did the including. The proxy

HOW CLASSES AND OBJECTS INTERACT 221

Figure 19.3. Adding a singleton class to an object

a = ’hello’

a
flags: ...

iv_tbl:
klass:

String

flags: ...
super:
iv_tbl:
klass:

methods:
- : :
- to_s
- : :

Class
String

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

class <<a
def to_s

”The value is ’#{self}’”
end
def twoTimes

self + self
end

end

a
flags: ...

iv_tbl:
klass:

String

flags: S
super:
iv_tbl:
klass:

methods:
- to_s
- twoTimes

singleton

flags: ...
super:
iv_tbl:
klass:

methods:
- : :
- to_s
- : :

Class
String

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

class contains references to the instance variables and methods of the module. This is
important: the same module may be included in many different classes, and will appear
in many different inheritance chains. However, thanks to the proxy class, there is still
only one underlying module: change a method definition in that module, and it will
change in all classes that include that module, both past and future.

222 CHAPTER 19. CLASSES AND OBJECTS

module SillyModule

def hello

"Hello."

end

end

class SillyClass

include SillyModule

end

s = SillyClass.new

s.hello → "Hello."

module SillyModule

def hello

"Hi, there!"

end

end

s.hello → "Hi, there!"

The relationship between classes and the modules they include is shown in Figure 19.4 on
the next page. If multiple modules are included, they are added to the chain in order.

If a module itself includes other modules, a chain of proxy classes will be added to any
class that includes that module, one proxy for each module that is directly or indirectly
included.

Extending Objects
Just as you can define an anonymous class for an object using “class <<obj ”, you
can mix a module into an object using Object#extend. For example:

module Humor

def tickle

"hee, hee!"

end

end

a = "Grouchy"

a.extend Humor

a.tickle → "hee, hee!"

There is an interesting trick with extend. If you use it within a class definition, the
module’s methods become class methods.

module Humor

def tickle

"hee, hee!"

end

end

class Grouchy

include Humor

extend Humor

end

Grouchy.tickle → "hee, hee!"

a = Grouchy.new

a.tickle → "hee, hee!"

CLASS AND MODULE DEFINITIONS 223

Figure 19.4. An included module and its proxy class

class Guitar
include Enumerable
def play()

...
end
...

end

lucille = Guitar.newlucille
flags: ...

iv_tbl:
klass:

Guitar

flags: ...
super:
iv_tbl:
klass:

methods:
- play

Class
Guitar

flags: ...
super:
iv_tbl:
klass:

methods:

Proxy

flags: ...
super:
iv_tbl:
klass:

methods:
- clone
- display
- dup

Class
Object

flags: ...
super:
iv_tbl:
klass:

methods:
- collect
- detect

Module
Enum...

This is because calling extend is equivalent to self.extend, so the methods are
added to self, which in a class definition is the class itself.

Class and Module Definitions
Having exhausted the combinations of classes and objects, we can (thankfully) get back
to programming by looking at the nuts and bolts of class and module definitions.

In languages such as C++ and Java, class definitions are processed at compile time: the
compiler loads up symbol tables, works out how much storage to allocate, constructs
dispatch tables, and does all those other obscure things we’d rather not think too hard
about.

Ruby is different. In Ruby, class and module definitions are executable code. Although
parsed at compile time, the classes and modules are created at runtime, when the def-
inition is encountered. (The same is also true of method definitions.) This allows you

224 CHAPTER 19. CLASSES AND OBJECTS

to structure your programs far more dynamically than in most conventional languages.
You can make decisions once, when the class is being defined, rather than each time
that objects of the class are used. The class in the following example decides as it is
being defined what version of a decryption routine to create.

class MediaPlayer

include Tracing if $DEBUGGING

if ::EXPORT_VERSION

def decrypt(stream)

raise "Decryption not available"

end

else

def decrypt(stream)

...

end

end

end

If class definitions are executable code, this implies that they execute in the context of
some object: self must reference something. Let’s find out what it is.

class Test

puts "Type of self = #{self.class}"

puts "Name of self = #{self.name}"

end

produces:

Type of self = Class

Name of self = Test

This means that a class definition is executed with that class as the current object.
Referring back to the section about metaclasses on page 218, we can see that this means
that methods in the metaclass and its superclasses will be available during the execution
of the method definition. We can check this out.

class Test

def Test.sayHello

puts "Hello from #{name}"

end

sayHello

end

produces:

Hello from Test

In this example we define a class method, Test.sayHello, and then call it in the body
of the class definition. Within sayHello, we call name, an instance method of class
Module. Because Module is an ancestor of Class, its instance methods can be called
without an explicit receiver within a class definition.

In fact, many of the directives that you use when defining a class or module, things
such as alias_method, attr, and public, are simply methods in class Module. This
opens up some interesting possibilities—you can extend the functionality of class and
module definitions by writing Ruby code. Let’s look at a couple of examples.

CLASS AND MODULE DEFINITIONS 225

As a first example, let’s look at adding a basic documentation facility to modules and
classes. This would allow us to associate a string with modules and classes that we
write, a string that is accessible as the program is running. We’ll choose a simple syntax.

class Example

doc "This is a sample documentation string"

.. rest of class

end

We need to make doc available to any module or class, so we need to make it an
instance method of class Module.

class Module

@@docs = Hash.new(nil)

def doc(str)

@@docs[self.name] = str

end

def Module::doc(aClass)

If we’re passed a class or module, convert to string

(’<=’ for classes checks for same class or subtype)

aClass = aClass.name if aClass.class <= Module

@@docs[aClass] || "No documentation for #{aClass}"

end

end

class Example

doc "This is a sample documentation string"

.. rest of class

end

module Another

doc <<-edoc

And this is a documentation string

in a module

edoc

rest of module

end

puts Module::doc(Example)

puts Module::doc("Another")

produces:
This is a sample documentation string

And this is a documentation string

in a module

The second example is a performance enhancement based on Tadayoshi Funaba’s date
module (described beginning on page 401). Say we have a class that represents some
underlying quantity (in this case, a date). The class may have many attributes that
present the same underlying date in different ways: as a Julian day number, as a string,
as a [year, month, day] triple, and so on. Each value represents the same date and may
involve a fairly complex calculation to derive. We therefore would like to calculate each
attribute only once, when it is first accessed.

The manual way would be to add a test to each accessor:

class ExampleDate

def initialize(dayNumber)

@dayNumber = dayNumber

226 CHAPTER 19. CLASSES AND OBJECTS

end

def asDayNumber

@dayNumber

end

def asString

unless @string

complex calculation

@string = result

end

@string

end

def asYMD

unless @ymd

another calculation

@ymd = [y, m, d]

end

@ymd

end

...

end

This is a clunky technique—let’s see if we can come up with something sexier.

What we’re aiming for is a directive that indicates that the body of a particular method
should be invoked only once. The value returned by that first call should be cached.
Thereafter, calling that same method should return the cached value without reevaluat-
ing the method body again. This is similar to Eiffel’s once modifier for routines. We’d
like to be able to write something like:

class ExampleDate

def asDayNumber

@dayNumber

end

def asString

complex calculation

end

def asYMD

another calculation

[y, m, d]

end

once :asString, :asYMD

end

We can use once as a directive by writing it as a class method of ExampleDate, but
what should it look like internally? The trick is to have it rewrite the methods whose
names it is passed. For each method, it creates an alias for the original code, then
creates a new method with the same name. This new method does two things. First,
it invokes the original method (using the alias) and stores the resulting value in an
instance variable. Second, it redefines itself, so that on subsequent calls it simply returns
the value of the instance variable directly. Here’s Tadayoshi Funaba’s code, slightly
reformatted.

def ExampleDate.once(*ids)

for id in ids

CLASS AND MODULE DEFINITIONS 227

module_eval <<-"end_eval"

alias_method :__#{id.to_i}__, #{id.inspect}

def #{id.id2name}(*args, &block)

def self.#{id.id2name}(*args, &block)

@__#{id.to_i}__

end

@__#{id.to_i}__ = __#{id.to_i}__(*args, &block)

end

end_eval

end

end

This code uses module_eval to execute a block of code in the context of the calling
module (or, in this case, the calling class). The original method is renamed __nnn__,
where the nnn part is the integer representation of the method name’s symbol id. The
code uses the same name for the caching instance variable. The bulk of the code is a
method that dynamically redefines itself. Note that this redefinition uses the fact that
methods may contain nested singleton method definitions, a clever trick.

Understand this code, and you’ll be well on the way to true Ruby mastery.

However, we can take it further. Look in the date module, and you’ll see method once
written slightly differently.

class Date

class << self

def once(*ids)

...

end

end

...

end

The interesting thing here is the inner class definition, “class << self”. This defines
a class based on the object self, and self happens to be the class object for Date. The
result? Every method within the inner class definition is automatically a class method
of Date.

The once feature is generally applicable—it should work for any class. If you took
once and made it a private instance method of class Module, it would be available for
use in any Ruby class.

Class Names Are Constants
We’ve said that when you invoke a class method, all you’re doing is sending a message
to the Class object itself. When you say something such as String.new("gumby"),
you’re sending the message new to the object that is class String. But how does Ruby
know to do this? After all, the receiver of a message should be an object reference,
which implies that there must be a constant called “String” somewhere containing a
reference to the String object.1 And in fact, that’s exactly what happens. All the built-

1. It will be a constant, not a variable, because “String” starts with an uppercase letter.

228 CHAPTER 19. CLASSES AND OBJECTS

in classes, along with the classes you define, have a corresponding global constant with
the same name as the class. This is both straightforward and subtle. The subtlety comes
from the fact that there are actually two things named (for example) String in the
system. There’s a constant that references an object of class String, and there’s the
object itself.

The fact that class names are just constants means that you can treat classes just like
any other Ruby object: you can copy them, pass them to methods, and use them in
expressions.

def factory(klass, *args)

klass.new(*args)

end

factory(String, "Hello") → "Hello"

factory(Dir, ".") → #<Dir:0x394c54>

flag = true

(flag ? Array : Hash)[1, 2, 3, 4] → [1, 2, 3, 4]

flag = false

(flag ? Array : Hash)[1, 2, 3, 4] → {1=>2, 3=>4}

Top-Level Execution Environment
Many times in this book we’ve claimed that everything in Ruby is an object. However,
there’s one thing that we’ve used time and time again that appears to contradict this—
the top-level Ruby execution environment.

puts "Hello, World"

Not an object in sight. We may as well be writing some variant of Fortran or QW-Basic.
But dig deeper, and you’ll come across objects and classes lurking in even the simplest
code.

We know that the literal "Hello, World" generates a Ruby String, so there’s one
object. We also know that the bare method call to puts is effectively the same as
self.puts. But what is “self”?

self.class → Object

At the top level, we’re executing code in the context of some predefined object. When
we define methods, we’re actually creating (private) singleton methods for this object.
Instance variables belong to this object. And because we’re in the context of Object,
we can use all of Object’s methods (including those mixed-in from Kernel) in func-
tion form. This explains why we can call Kernelmethods such as puts at the top level
(and indeed throughout Ruby): these methods are part of every object.

Inheritance and Visibility
There’s one last wrinkle to class inheritance, and it’s fairly obscure.

FREEZING OBJECTS 229

Within a class definition, you can change the visibility of a method in an ancestor class.
For example, you can do something like:

class Base

def aMethod

puts "Got here"

end

private :aMethod

end

class Derived1 < Base

public :aMethod

end

class Derived2 < Base

end

In this example, you would be able to invoke aMethod in instances of class Derived1,
but not via instances of Base or Derived2.

So how does Ruby pull off this feat of having one method with two different visibilities?
Simply put, it cheats.

If a subclass changes the visibility of a method in a parent, Ruby effectively inserts a
hidden proxy method in the subclass that invokes the original method using super. It
then sets the visibility of that proxy to whatever you requested. This means that the
code:

class Derived1 < Base

public :aMethod

end

is effectively the same as:

class Derived1 < Base

def aMethod(*args)

super

end

public :aMethod

end

The call to super can access the parent’s method regardless of its visibility, so the
rewrite allows the subclass to override its parent’s visibility rules. Pretty scary, eh?

Freezing Objects
There are times when you’ve worked hard to make your object exactly right, and you’ll
be damned if you’ll let anyone just change it. Perhaps you need to pass some kind of
opaque object between two of your classes via some third-party object, and you want
to make sure it arrives unmodified. Perhaps you want to use an object as a hash key,
and need to make sure that no one modifies it while it’s being used. Perhaps something
is corrupting one of your objects, and you’d like Ruby to raise an exception as soon as
the change occurs.

230 CHAPTER 19. CLASSES AND OBJECTS

Ruby provides a very simple mechanism to help with this. Any object can be frozen by
invoking Object#freeze. A frozen object may not be modified: you can’t change its
instance variables (directly or indirectly), you can’t associate singleton methods with
it, and, if it is a class or module, you can’t add, delete, or modify its methods. Once
frozen, an object stays frozen: there is no Object#thaw. You can test to see if an object
is frozen using Object#frozen?.

What happens when you copy a frozen object? That depends on the method you use.
If you call an object’s clone method, the entire object state (including whether it is
frozen) is copied to the new object. On the other hand, dup typically copies only the
object’s contents—the new copy will not inherit the frozen status.

str1 = "hello"

str1.freeze → "hello"

str1.frozen? → true

str2 = str1.clone

str2.frozen? → true

str3 = str1.dup

str3.frozen? → false

Although freezing objects may initially seem like a good idea, you might want to hold
off doing it until you come across a real need. Freezing is one of those ideas that looks
essential on paper but isn’t used much in practice.

Chapter 20

Locking Ruby in the Safe

Walter Webcoder has a great idea for a portal site: The Web Arithmetic Page. Sur-
rounded by all sorts of cool mathematical links and banner ads that will make him rich
is a simple central frame, containing a text field and a button. Users type an arithmetic
expression into the field, press the button, and the answer is displayed. All the world’s
calculators become obsolete overnight, and Walter cashes in and retires to devote his
life to his collection of car license plate numbers.

Implementing the calculator is easy, thinks Walter. He accesses the contents of the form
field using Ruby’s CGI library, and uses the eval method to evaluate the string as an
expression.

require ’cgi’

cgi = CGI::new("html4")

Fetch the value of the form field "expression"

expr = cgi["expression"].to_s

begin

result = eval(expr)

rescue Exception => detail

handle bad expressions

end

display result back to user...

Roughly seven seconds after Walter puts the application online, a twelve-year-old from
Waxahachie with glandular problems and no real life types “system("rm *")” into
the form and, like his application, Walter’s dreams come tumbling down.

Walter learned an important lesson: All external data is dangerous. Don’t let it close to
interfaces that can modify your system. In this case, the content of the form field was
the external data, and the call to eval was the security breach.

Fortunately, Ruby provides support for reducing this risk. All information from the
outside world can be marked as tainted. When running in a safe mode, potentially
dangerous methods will raise a SecurityError if passed a tainted object.

231

232 CHAPTER 20. LOCKING RUBY IN THE SAFE

Safe Levels
The variable $SAFE determines Ruby’s level of paranoia. Table 20.1 on page 234 gives
details of the checks performed at each safe level.

$SAFE Constraints

0 No checking of the use of externally supplied (tainted) data is performed.
This is Ruby’s default mode.

≥ 1 Ruby disallows the use of tainted data by potentially dangerous operations.

≥ 2 Ruby prohibits the loading of program files from globally writable locations.

≥ 3 All newly created objects are considered tainted.

≥ 4 Ruby effectively partitions the running program in two. Nontainted objects
may not be modified. Typically, this will be used to create a sandbox: the pro-
gram sets up an environment using a lower $SAFE level, then resets $SAFE
to 4 to prevent subsequent changes to that environment.

The default value of $SAFE is zero under most circumstances. However, if a Ruby script
is run setuid or setgid,1 its safe level is automatically set to 1. The safe level may also be
set using the -T command-line option, and by assigning to $SAFE within the program.
It is not possible to lower the value of $SAFE by assignment.

The current value of $SAFE is inherited when new threads are created. However, within
each thread, the value of $SAFE may be changed without affecting the value in other
threads. This facility may be used to implement secure “sandboxes,” areas where exter-
nal code may run safely without risking the rest of your application or system. Do this
by wrapping code that you load from a file in its own, anonymous module. This will
protect your program’s namespace from any unintended alteration.

f=open(fileName,"w")

f.print ... # write untrusted program into file.

f.close

Thread.start {

$SAFE = 4

load(fileName, true)

}

With a $SAFE level of 4, you can load only wrapped files. See Kernel.load on
page 382 for details.

Tainted Objects
Any Ruby object derived from some external source (for example, a string read from
a file, or an environment variable) is automatically marked as being tainted. If your

1. A Unix script may be flagged to be run under a different user or group id than the person running it.
This allows the script to have privileges that the user does not have; the script can access resources that the
user would otherwise be prohibited from using. These scripts are called setuid or setgid.

TAINTED OBJECTS 233

program uses a tainted object to derive a new object, then that new object will also be
tainted, as shown in the code below. Any object with external data somewhere in its
past will be tainted. This tainting process is performed regardless of the current safe
level. You can inspect the tainted status of an object using Object#tainted?.

internal data

=============

x1 = "a string"

x1.tainted? → false

x2 = x1[2, 4]

x2.tainted? → false

x1 =~ /([a-z])/ → 0

$1.tainted? → false

external data

=============

y1 = ENV["HOME"]

y1.tainted? → true

y2 = y1[2, 4]

y2.tainted? → true

y1 =~ /([a-z])/ → 1

$1.tainted? → true

You can force any object to become tainted by invoking its taint method. If the safe
level is less than 3, you can remove the taint from an object by invoking untaint.2

This is clearly not something to do lightly.

Clearly, Walter should have run his CGI script at a safe level of 1. This would have
raised an exception when the program tried to pass form data to eval. Once this had
happened, Walter would have had a number of choices. He could have chosen to imple-
ment a proper expression parser, bypassing the risks inherent in using eval. However,
being lazy, it’s more likely he’d have performed some simple sanity check on the form
data, and untaint it if it looked innocuous.

require ’cgi’;

$SAFE = 1

cgi = CGI::new("html4")

expr = cgi["field"].to_s

if expr =~ %r{^[-+*/\d\seE.()]*$}

expr.untaint

result = eval(expr)

display result back to user...

else

display error message...

end

Personally, we think Walter’s still taking undue risks. We’d probably prefer to see a real
parser here, but implementing one here has nothing to teach us about tainting, so we’ll
move on.

And remember—it’s a dangerous world out there. Be careful.

2. There are also some devious ways of doing this without using untaint. We’ll leave it up to your
darker side to find them.

234 CHAPTER 20. LOCKING RUBY IN THE SAFE

Table 20.1. Definition of the safe levels
$SAFE >= 1

• The environment variables RUBYLIB and RUBYOPT are not processed, and the current directory
is not added to the path.

• The command-line options -e, -i, -I, -r, -s, -S, and -x are not allowed.
• Can’t start processes from $PATH if any directory in it is world-writable.
• Can’t manipulate or chroot to a directory whose name is a tainted string.
• Can’t glob tainted strings.
• Can’t eval tainted strings.
• Can’t load or require a file whose name is a tainted string.
• Can’t manipulate or query the status of a file or pipe whose name is a tainted string.
• Can’t execute a system command or exec a program from a tainted string.
• Can’t pass trap a tainted string.

$SAFE >= 2
• Can’t change, make, or remove directories, or use chroot.
• Can’t load a file from a world-writable directory.
• Can’t load a file from a tainted filename starting with ~.
• Can’t use File#chmod, File#chown, File#lstat, File.stat, File#truncate,

File.umask, File#flock, IO#ioctl, IO#stat, Kernel#fork, Kernel#syscall,
Kernel#trap. Process.setpgid, Process.setsid, Process.setpriority, or
Process.egid=.

• Can’t handle signals using trap.

$SAFE >= 3
• All objects are created tainted.
• Can’t untaint objects.

$SAFE >= 4
• Can’t modify a nontainted array, hash, or string.
• Can’t modify a global variable.
• Can’t access instance variables of nontainted objects.
• Can’t change an environment variable.
• Can’t close or reopen nontainted files.
• Can’t freeze nontainted objects.
• Can’t change visibility of methods (private/public/protected).
• Can’t make an alias in a nontainted class or module.
• Can’t get meta information (such as method or variable lists).
• Can’t define, redefine, remove, or undef a method in a nontainted class or module.
• Can’t modify Object.
• Can’t remove instance variables or constants from nontainted objects.
• Can’t manipulate threads, terminate a thread other than the current, or set

abort_on_exception.
• Can’t have thread local variables.
• Can’t raise an exception in a thread with a lower $SAFE value.
• Can’t move threads between ThreadGroups.
• Can’t invoke exit, exit!, or abort.
• Can load only wrapped files, and can’t include modules in nontainted classes and modules.
• Can’t convert symbol identifiers to object references.
• Can’t write to files or pipes.
• Can’t use autoload.
• Can’t taint objects.

Chapter 21

Reflection,
ObjectSpace, and
Distributed Ruby

One of the many advantages of dynamic languages such as Ruby is the ability to intro-
spect—to examine aspects of the program from within the program itself. Java, for one,
calls this feature reflection.

The word “reflection” conjures up an image of looking at oneself in the mirror—
perhaps investigating the relentless spread of that bald spot on the top of one’s head.
That’s a pretty apt analogy: we use reflection to examine parts of our programs that
aren’t normally visible from where we stand.

In this deeply introspective mood, while we are contemplating our navels and burning
incense (being careful not to swap the two tasks), what can we learn about our program?
We might discover:

• what objects it contains,
• the current class hierarchy,
• the contents and behaviors of objects, and
• information on methods.

Armed with this information, we can look at particular objects and decide which of their
methods to call at runtime—even if the class of the object didn’t exist when we first
wrote the code. We can also start doing clever things, perhaps modifying the program
as it’s running.

Sound scary? It needn’t be. In fact, these reflection capabilities let us do some very
useful things. Later in this chapter we’ll look at distributed Ruby and marshaling, two
reflection-based technologies that let us send objects around the world and through
time.

235

236 CHAPTER 21. REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY

Looking at Objects
Have you ever craved the ability to traverse all the living objects in your program? We
have! Ruby lets you perform this trick with ObjectSpace.each_object. We can use
it to do all sorts of neat tricks.

For example, to iterate over all objects of type Numeric, you’d write the following.

a = 102.7

b = 95.1

ObjectSpace.each_object(Numeric) {|x| p x }

produces:

95.09999999999999

102.7

2.718281828459045

3.141592653589793

Hey, where did those last two numbers come from? We didn’t define them in our pro-
gram. If you look on page 392, you’ll see that the Math module defines constants for e

and π; since we are examining all living objects in the system, these turn up as well.

However, there is a catch. Let’s try the same example with different numbers.

a = 102

b = 95

ObjectSpace.each_object(Numeric) {|x| p x }

produces:

2.718281828459045

3.141592653589793

Neither of the Fixnum objects we created showed up. That’s because ObjectSpace

doesn’t know about objects with immediate values: Fixnum, true, false, and nil.

Looking Inside Objects
Once you’ve found an interesting object, you may be tempted to find out just what it
can do. Unlike static languages, where a variable’s type determines its class, and hence
the methods it supports, Ruby supports liberated objects. You really cannot tell exactly
what an object can do until you look under its hood.1

For instance, we can get a list of all the methods to which an object will respond.

r = 1..10 # Create a Range object

list = r.methods

list.length → 68

list[0..3] → ["inspect", "begin", "include?", "=="]

Or, we can check to see if an object supports a particular method.

1. Or under its bonnet, for objects created to the east of the Atlantic.

LOOKING AT CLASSES 237

r.respond_to?("frozen?") → true

r.respond_to?("hasKey") → false

"me".respond_to?("==") → true

We can determine our object’s class and its unique object id, and test its relationship to
other classes.

num = 1

num.id → 3

num.class → Fixnum

num.kind_of? Fixnum → true

num.kind_of? Numeric → true

num.instance_of? Fixnum → true

num.instance_of? Numeric → false

Looking at Classes
Knowing about objects is one part of reflection, but to get the whole picture, you also
need to be able to look at classes—the methods and constants that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular class
using Class#superclass. For classes and modules, Module#ancestors lists both
superclasses and mixed-in modules.

klass = Fixnum

begin

print klass

klass = klass.superclass

print " < " if klass

end while klass

puts

p Fixnum.ancestors

produces:

Fixnum < Integer < Numeric < Object

[Fixnum, Integer, Precision, Numeric, Comparable, Object, Kernel]

If you want to build a complete class hierarchy, just run that code for every class in the
system. We can use ObjectSpace to iterate over all Class objects:

ObjectSpace.each_object(Class) do |aClass|

...

end

Looking Inside Classes

We can find out a bit more about the methods and constants in a particular object.
Instead of just checking to see whether the object responds to a given message, we can
ask for methods by access level, we can ask for just singleton methods, and we can
have a look at the object’s constants.

238 CHAPTER 21. REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY

class Demo

private

def privMethod

end

protected

def protMethod

end

public

def pubMethod

end

def Demo.classMethod

end

CONST = 1.23

end

Demo.private_instance_methods → ["privMethod"]

Demo.protected_instance_methods → ["protMethod"]

Demo.public_instance_methods → ["pubMethod"]

Demo.singleton_methods → ["classMethod"]

Demo.constants - Demo.superclass.constants → ["CONST"]

Module.constants returns all the constants available via a module, including con-
stants from the module’s superclasses. We’re not interested in those just at the moment,
so we’ll subtract them from our list.

Given a list of method names, we might now be tempted to try calling them. Fortu-
nately, that’s easy with Ruby.

Calling Methods Dynamically
C and Java programmers often find themselves writing some kind of dispatch table:
functions which are invoked based on a command. Think of a typical C idiom where
you have to translate a string to a function pointer:

typedef struct {

char *name;

void (*fptr)();

} Tuple;

Tuple list[]= {

{ "play", fptr_play },

{ "stop", fptr_stop },

{ "record", fptr_record },

{ 0, 0 },

};

...

void dispatch(char *cmd) {

int i = 0;

for (; list[i].name; i++) {

if (strncmp(list[i].name,cmd,strlen(cmd)) == 0) {

list[i].fptr();

return;

}

CALLING METHODS DYNAMICALLY 239

}

/* not found */

}

In Ruby, you can do all this in one line. Stick all your command functions into a class,
create an instance of that class (we called it commands), and ask that object to execute
a method called the same name as the command string.

commands.send(commandString)

Oh, and by the way, it does much more than the C version—it’s dynamic. The Ruby
version will find new methods added at runtime just as easily.

You don’t have to write special command classes for send: it works on any object.

"John Coltrane".send(:length) → 13

"Miles Davis".send("sub", /iles/, ’.’) → "M. Davis"

Another way of invoking methods dynamically uses Method objects. A Method object
is like a Proc object: it represents a chunk of code and a context in which it executes. In
this case, the code is the body of the method, and the context is the object that created
the method. Once we have our Method object, we can execute it sometime later by
sending it the message call.

trane = "John Coltrane".method(:length)

miles = "Miles Davis".method("sub")

trane.call → 13

miles.call(/iles/, ’.’) → "M. Davis"

You can pass the Method object around as you would any other object, and when you
invoke Method#call, the method is run just as if you had invoked it on the original
object. It’s like having a C-style function pointer but in a fully object-oriented style.

You can also use Method objects with iterators.

def double(a)

2*a

end

mObj = method(:double)

[1, 3, 5, 7].collect(&mObj) → [2, 6, 10, 14]

As good things come in threes, here’s yet another way to invoke methods dynami-
cally. The eval method (and its variations such as class_eval, module_eval, and
instance_eval) will parse and execute an arbitrary string of legal Ruby source code.

trane = %q{"John Coltrane".length}

miles = %q{"Miles Davis".sub(/iles/, ’.’)}

eval trane → 13

eval miles → "M. Davis"

When using eval, it can be helpful to state explicitly the context in which the expres-
sion should be evaluated, rather than using the current context. You can obtain a context
by calling Kernel#binding at the desired point.

240 CHAPTER 21. REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY

class CoinSlot

def initialize(amt=Cents.new(25))

@amt = amt

$here = binding

end

end

a = CoinSlot.new

eval "puts @amt", $here

eval "puts @amt"

produces:

$0.25USD

nil

The first eval evaluates @amt in the context of the instance of class CoinSlot. The
second eval evaluates @amt in the context of Object, where the instance variable
@amt is not defined.

Performance Considerations
As we’ve seen in this section, there are several ways to invoke an arbitrary method of
some object: Object#send, Method#call, and the various flavors of eval.

You may prefer to use any one of these techniques depending on your needs, but be
aware that eval is significantly slower than the others (or, for optimistic readers, send
and call are significantly faster than eval).

require "benchmark" # from the Ruby Application Archive

include Benchmark

test = "Stormy Weather"

m = test.method(:length)

n = 100000

bm(12) {|x|

x.report("call") { n.times { m.call } }

x.report("send") { n.times { test.send(:length) } }

x.report("eval") { n.times { eval "test.length" } }

}

produces:

user system total real

call 0.130000 0.000000 0.130000 (0.128040)

send 0.140000 0.000000 0.140000 (0.138588)

eval 1.730000 0.090000 1.820000 (1.797044)

System Hooks
A hook is a technique that lets you trap some Ruby event, such as object creation.

The simplest hook technique in Ruby is to intercept calls to methods in system classes.
Perhaps you want to log all the operating system commands your program executes.

SYSTEM HOOKS 241

Simply rename the method Kernel.system2 and substitute it with one of your own
that both logs the command and calls the original Kernel method.

module Kernel

alias_method :old_system, :system

def system(*args)

result = old_system(*args)

puts "system(#{args.join(’, ’)}) returned #{result}"

result

end

end

system("date")

system("kangaroo", "-hop 10", "skippy")

produces:
Thu Dec 26 20:04:52 MSK 2002

system(date) returned true

system(kangaroo, -hop 10, skippy) returned false

A more powerful hook is catching objects as they are created. If you can be present
when every object is born, you can do all sorts of interesting things: you can wrap
them, add methods to them, remove methods from them, add them to containers to
implement persistence, you name it. We’ll show a simple example here: we’ll add a
timestamp to every object as it’s created.

One way to hook object creation is to do our method renaming trick on Class#new, the
method that’s called to allocate space for a new object. The technique isn’t perfect—
some built-in objects, such as literal strings, are constructed without calling new—but
it’ll work just fine for objects we write.

class Class

alias_method :old_new, :new

def new(*args)

result = old_new(*args)

result.timestamp = Time.now

return result

end

end

We’ll also need to add a timestamp attribute to every object in the system. We can do
this by hacking class Object itself.

class Object

def timestamp

return @timestamp

end

def timestamp=(aTime)

@timestamp = aTime

end

end

2. This Eiffel-inspired idiom of renaming a feature and redefining a new one is very useful, but be aware
that it can cause problems. If a subclass does the same thing, and renames the methods using the same names,
you’ll end up with an infinite loop. You can avoid this by aliasing your methods to a unique symbol name or
by using a consistent naming convention.

242 CHAPTER 21. REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY

Finally, we can run a test. We’ll create a couple of objects a few seconds apart and
check their timestamps.

class Test

end

obj1 = Test.new

sleep 2

obj2 = Test.new

obj1.timestamp → Thu Dec 26 20:04:52 MSK 2002

obj2.timestamp → Thu Dec 26 20:04:54 MSK 2002

All this method renaming is fine, and it really does work. However, there are other,
more refined ways to get inside a running program. Ruby provides several callback
methods that let you trap certain events in a controlled way.

Runtime Callbacks
You can be notified whenever one of the following events occurs:

Event Callback Method

Adding an instance method Module#method_added

Adding a singleton method Kernel.singleton_method_added

Subclassing a class Class#inherited

Mixing in a module Module#extend_object

These techniques are all illustrated in the library descriptions for each callback method.
At runtime, these methods will be called by the system when the specified event occurs.
By default, these methods do nothing. If you want to be notified when one of these
events happens, just define the callback method, and you’re in.

Keeping track of method creation and class and module usage lets you build an accurate
picture of the dynamic state of your program. This can be important. For example, you
may have written code that wraps all the methods in a class, perhaps to add transactional
support or to implement some form of delegation. This is only half the job: the dynamic
nature of Ruby means that users of this class could add new methods to it at any time.
Using these callbacks, you can write code that wraps these new methods as they are
created.

Tracing Your Program’s Execution
While we’re having fun reflecting on all the objects and classes in our programs, let’s
not forget about the humble statements that make our code actually do things. It turns
out that Ruby lets us look at these statements, too.

First, you can watch the interpreter as it executes code. set_trace_func executes
a Proc with all sorts of juicy debugging information whenever a new source line is
executed, methods are called, objects are created, and so on. There’s a full description
on page 386, but here’s a taste.

TRACING YOUR PROGRAM’S EXECUTION 243

class Test

def test

a = 1

b = 2

end

end

set_trace_func proc { |event, file, line, id, binding, classname|

printf "%8s %s:%-2d %10s %8s\n", event, file, line, id, classname

}

t = Test.new

t.test

produces:

line prog.rb:11 false

c-call prog.rb:11 new Class

c-call prog.rb:11 allocate Class

c-return prog.rb:11 allocate Class

c-call prog.rb:11 initialize Object

c-return prog.rb:11 initialize Object

c-return prog.rb:11 new Class

line prog.rb:12 false

call prog.rb:2 test Test

line prog.rb:3 test Test

line prog.rb:4 test Test

return prog.rb:4 test Test

There’s also a method trace_var (described on page 389) that lets you add a hook to
a global variable; whenever an assignment is made to the global, your Proc object is
invoked.

How Did We Get Here?

A fair question, and one we ask ourselves regularly. Mental lapses aside, in Ruby at
least you can find out exactly “how you got there” by using the method caller, which
returns an Array of String objects representing the current call stack.

def catA

puts caller.join("\n")

end

def catB

catA

end

def catC

catB

end

catC

produces:

prog.rb:5:in `catB’

prog.rb:8:in `catC’

prog.rb:10

Once you’ve figured out how you got there, where you go next is up to you.

244 CHAPTER 21. REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY

Marshaling and Distributed Ruby
Java features the ability to serialize objects, letting you store them somewhere and
reconstitute them when needed. You might use this facility, for instance, to save a tree of
objects that represent some portion of application state—a document, a CAD drawing,
a piece of music, and so on.

Ruby calls this kind of serialization marshaling.3 Saving an object and some or all of
its components is done using the method Marshal.dump. Typically, you will dump an
entire object tree starting with some given object. Later on, you can reconstitute the
object using Marshal.load.

Here’s a short example. We have a class Chord that holds a collection of musical notes.
We’d like to save away a particularly wonderful chord so our grandchildren can load it
into Ruby Version 23.5 and savor it, too. Let’s start off with the classes for Note and
Chord.

class Note

attr :value

def initialize(val)

@value = val

end

def to_s

@value.to_s

end

end

class Chord

def initialize(arr)

@arr = arr

end

def play

@arr.join(’-’)

end

end

Now we’ll create our masterpiece, and use Marshal.dump to save a serialized version
of it to disk.

c = Chord.new([Note.new("G"), Note.new("Bb"),

Note.new("Db"), Note.new("E")])

File.open("posterity", "w+") do |f|

Marshal.dump(c, f)

end

Finally, our grandchildren read it in, and are transported by our creation’s beauty.

File.open("posterity") do |f|

chord = Marshal.load(f)

end

chord.play → "G-Bb-Db-E"

3. Think of railroad marshaling yards where individual cars are assembled in sequence into a complete
train, which is then dispatched somewhere.

MARSHALING AND DISTRIBUTED RUBY 245

Custom Serialization Strategy
Not all objects can be dumped: bindings, procedure objects, instances of class IO,
and singleton objects cannot be saved outside of the running Ruby environment (a
TypeError will be raised if you try). Even if your object doesn’t contain one of these
problematic objects, you may want to take control of object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom serialization,
simply implement two methods: an instance method called _dump, which writes the
object out to a string, and a class method called _load, which reads a string that you’d
previously created and converts it into a new object.

For instance, here is a sample class that defines its own serialization. For whatever
reasons, Special doesn’t want to save one of its internal data members, “@volatile”.

class Special

def initialize(valuable)

@valuable = valuable

@volatile = "Goodbye"

end

def _dump(depth)

@valuable.to_str

end

def Special._load(str)

result = Special.new(str);

end

def to_s

"#{@valuable} and #{@volatile}"

end

end

a = Special.new("Hello, World")

data = Marshal.dump(a)

obj = Marshal.load(data)

puts obj

produces:

Hello, World and Goodbye

For more details, see the reference section on Marshal beginning on page 391.

Distributed Ruby
Since we can serialize an object or a set of objects into a form suitable for out-of-
process storage, we can use this capability for the transmission of objects from one
process to another. Couple this capability with the power of networking, and voilà: you
have a distributed object system. To save you the trouble of having to write the code, we
suggest downloading Masatoshi Seki’s Distributed Ruby library (drb) from the RAA.

Using drb, a Ruby process may act as a server, as a client, or as both. A drb server acts
as a source of objects, while a client is a user of those objects. To the client, it appears
that the objects are local, but in reality the code is still being executed remotely.

246 CHAPTER 21. REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY

A server starts a service by associating an object with a given port. Threads are created
internally to handle incoming requests on that port, so remember to join the drb thread
before exiting your program.

require ’drb’

class TestServer

def doit

"Hello, Distributed World"

end

end

aServerObject = TestServer.new

DRb.start_service(’druby://localhost:9000’, aServerObject)

DRb.thread.join # Don’t exit just yet!

A simple drb client simply creates a local drb object and associates it with the object
on the remote server; the local object is a proxy.

require ’drb’

DRb.start_service()

obj = DRbObject.new(nil, ’druby://localhost:9000’)

Now use obj

p obj.doit

The client connects to the server and calls the method doit, which returns a string that
the client prints out:

"Hello, Distributed World"

The initial nil argument to DRbObject indicates that we want to attach to a new dis-
tributed object. We could also use an existing object.

Ho hum, you say. This sounds like Java’s RMI, or CORBA, or whatever. Yes, it is a
functional distributed object mechanism—but it is written in just 200 lines of Ruby
code. No C, nothing fancy, just plain old Ruby code. Of course, there’s no naming
service or trader service, or anything like you’d see in CORBA, but it is simple and
reasonably fast. On the 233MHz test system, this sample code runs at about 50 remote
message calls per second.

And, if you like the look of Sun’s JavaSpaces, the basis of their JINI architecture, you’ll
be interested to know that drb is distributed with a short module that does the same kind
of thing. JavaSpaces is based on a technology called Linda. To prove that its Japanese
author has a sense of humor, Ruby’s version of Linda is known as “rinda.”

Compile Time? Runtime? Anytime!
The important thing to remember about Ruby is that there isn’t a big difference between
“compile time” and “runtime.” It’s all the same. You can add code to a running process.
You can redefine methods on the fly, change their scope from public to private, and
so on. You can even alter basic types, such as Class and Object.

Once you get used to this flexibility, it is hard to go back to a static language such as
C++, or even to a half-static language such as Java.

COMPILE TIME? RUNTIME? ANYTIME! 247

But then, why would you want to?

Part IV

Ruby Library Reference

249

Chapter 22

Built-in Classes

This chapter documents the classes built into the standard Ruby language. They are
available to every Ruby program automatically; no require required. This section
does not contain the various predefined variables and constants; these are listed starting
on page 194.

In the descriptions that follow, we show sample invocations for each method.

new String.new(aString)→ aNewString

This description shows a class method that is called as String.new. The italic param-
eter indicates that a single String object is passed, and the arrow indicates that another
String object is returned from the method. Because this return value has a different
name than that of the parameter, it represents a different object.

When we illustrate instance methods, we show a sample call with a dummy object
name in italics as the receiver:

each str.each(aString=$/) {| rec | block } → str

The parameter to String#each is shown to have a default value; call each with no
parameter, and the value of $/ will be used. This method is an iterator, so the call is
followed by a block. String#each returns its receiver, so the receiver’s name (str in
this case) appears again after the arrow.

Some methods have optional parameters. We show these parameters between angle
brackets, 〈 xxx 〉. (Additionally, we use the notation 〈 xxx 〉∗ to indicate zero or more
occurrences of xxx, and 〈 xxx 〉+ to indicate one or more occurrences of xxx.)

index self.index(aString 〈 , aFixnum 〉)→ aFixnum or nil

Finally, for methods that can be called in several different forms, we list each form on
a separate line.

251

252 CHAPTER 22. BUILT-IN CLASSES

Alphabetical Listing
Standard classes are listed alphabetically, followed in the next chapter by the standard
modules. Within each, we list the class (or module) methods, followed by the instance
methods.

Array (page 254): Class: [], new. Instance: &, *, +, –, <<, <=>, ==, ===, [], []=, |, assoc, at,
clear, collect, collect!, compact, compact!, concat, delete, delete_at, delete_if, each, each_index,
empty?, eql?, fill, first, flatten, flatten!, include?, index, indexes, indices, join, last, length, map!,
nitems, pack, pop, push, rassoc, reject!, replace, reverse, reverse!, reverse_each, rindex, shift,
size, slice, slice!, sort, sort!, to_a, to_ary, to_s, uniq, uniq!, unshift.

Bignum (page 265): Instance: Arithmetic operations, Bit operations, <=>, [], size, to_f, to_i,
to_s.

Binding (page 266)

Class (page 267): Class: inherited, new. Instance: new, superclass.

Continuation (page 268): Instance: call.

Dir (page 269): Class: [], chdir, chroot, delete, entries, foreach, getwd, glob, mkdir, new, open,
pwd, rmdir, unlink. Instance: close, each, read, rewind, seek, tell.

Exception (page 273): Class: exception. Instance: backtrace, exception, message,
set_backtrace.

FalseClass (page 274): Instance: &, ^, |.

File::Stat (page 281): Instance: <=>, atime, blksize, blockdev?, blocks, chardev?, ctime, dev,
directory?, executable?, executable_real?, file?, ftype, gid, grpowned?, ino, mode, mtime, nlink,
owned?, pipe?, rdev, readable?, readable_real?, setgid?, setuid?, size, size?, socket?, sticky?,
symlink?, uid, writable?, writable_real?, zero?.

File (page 275): Class: atime, basename, chmod, chown, ctime, delete, dirname, expand_path,
ftype, join, link, lstat, mtime, new, open, readlink, rename, size, split, stat, symlink, truncate,
umask, unlink, utime. Instance: atime, chmod, chown, ctime, flock, lstat, mtime, path, truncate.

Fixnum (page 286): Instance: Arithmetic operations, Bit operations, <=>, [], id2name, size,
to_f, to_i, to_s.

Float (page 287): Instance: Arithmetic operations, <=>, ceil, finite?, floor, infinite?, nan?, round,
to_f, to_i, to_s.

Hash (page 289): Class: [], new. Instance: ==, [], []=, clear, default, default=, delete, delete_if,
each, each_key, each_pair, each_value, empty?, fetch, has_key?, has_value?, include?, index,
indexes, indices, invert, key?, keys, length, member?, rehash, reject, reject!, replace, shift, size,
sort, store, to_a, to_s, update, value?, values.

Integer (page 295): Instance: chr, downto, integer?, next, step, succ, times, upto.

IO (page 297): Class: foreach, new, pipe, popen, readlines, select. Instance: <<, binmode, clone,
close, close_read, close_write, closed?, each, each_byte, each_line, eof, eof?, fcntl, fileno, flush,
getc, gets, ioctl, isatty, lineno, lineno=, pid, pos, pos=, print, printf, putc, puts, read, readchar,
readline, readlines, reopen, rewind, seek, stat, sync, sync=, sysread, syswrite, tell, to_i, to_io, tty?,
ungetc, write.

MatchData (page 307): Instance: [], begin, end, length, offset, post_match, pre_match, size,
string, to_a, to_s.

Method (page 309): Instance: [], arity, call, to_proc.

Module (page 310): Class: constants, nesting, new. Instance: <, <=, >, >=, <=>, ===,
ancestors, class_eval, class_variables, clone, const_defined?, const_get, const_set, constants,
included_modules, instance_methods, method_defined?, module_eval, name,

ALPHABETICAL LISTING 253

private_class_method, private_instance_methods, protected_instance_methods,
public_class_method, public_instance_methods. Private: alias_method, append_features, attr,
attr_accessor, attr_reader, attr_writer, extend_object, include, method_added, module_function,
private, protected, public, remove_const, remove_method, undef_method.

NilClass (page 318): Instance: &, ^, |, nil?, to_a, to_i, to_s.

Numeric (page 319): Instance: +@, –@, abs, coerce, divmod, eql?, integer?, modulo,
nonzero?, remainder, zero?.

Object (page 321): Instance: ==, ===, =~, _ _id_ _, _ _send_ _, class, clone, display, dup, eql?,
equal?, extend, freeze, frozen?, hash, id, inspect, instance_eval, instance_of?, instance_variables,
is_a?, kind_of?, method, method_missing, methods, nil?, private_methods, protected_methods,
public_methods, respond_to?, send, singleton_methods, taint, tainted?, to_a, to_s, class, untaint.

Proc (page 327): Class: new. Instance: [], arity, call.

Range (page 329): Class: new. Instance: ===, begin, each, end, exclude_end?, first, last.

Regexp (page 331): Class: compile, escape, last_match, new, quote. Instance: ==, ===, =~, ~,
casefold?, kcode, match, source.

String (page 333): Class: new. Instance: *, +, <<, <=>, ==, ===, =~, [], []=, ~, capitalize,
capitalize!, center, chomp, chomp!, chop, chop!, concat, count, crypt, delete, delete!, downcase,
downcase!, dump, each, each_byte, each_line, empty?, gsub, gsub!, hash, hex, include?, index,
intern, length, ljust, next, next!, oct, replace, reverse, reverse!, rindex, rjust, scan, size, slice, slice!,
split, squeeze, squeeze!, strip, strip!, sub, sub!, succ, succ!, sum, swapcase, swapcase!, to_f, to_i,
to_s, to_str, tr, tr!, tr_s, tr_s!, unpack, upcase, upcase!, upto.

Struct (page 348): Class: new, new, members. Instance: ==, [], []=, each, length, members,
size, to_a, values.

Struct::Tms (page 351)

Symbol (page 351): Instance: id2name, inspect, to_i, to_s.

ThreadGroup (page 358): Class: new. Instance: add, list.

Thread (page 352): Class: abort_on_exception, abort_on_exception=, critical, critical=, current,
exit, fork, kill, list, main, new, pass, start, stop. Instance: [], []=, abort_on_exception,
abort_on_exception=, alive?, exit, join, key?, kill, priority, priority=, raise, run, safe_level, status,
stop?, value, wakeup.

Time (page 359): Class: at, gm, local, mktime, new, now, utc. Instance: +, –, <=>, asctime,
ctime, day, gmt?, gmtime, hour, isdst, localtime, mday, min, mon, month, sec, strftime, to_a, to_f,
to_i, to_s, tv_sec, tv_usec, usec, utc, utc?, wday, yday, year, zone.

TrueClass (page 365): Instance: &, ^, |.

A
rr

ay

254 CHAPTER 22. BUILT-IN CLASSES

Class Array < Object

Arrays are ordered, integer-indexed collections of any object. Array indexing starts at
0, as in C or Java. A negative index is assumed relative to the end of the array—that is,
an index of −1 indicates the last element of the array,−2 is the next to last element in
the array, and so on.

Mixes in

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
[] Array[〈 anObject 〉∗]→ anArray

Returns a new array populated with the given objects. Equivalent to the operator form
Array.[](. . .).

Array.[](1, ’a’, /^A/) → [1, "a", /^A/]

Array[1, ’a’, /^A/] → [1, "a", /^A/]

[1, ’a’, /^A/] → [1, "a", /^A/]

new Array.new(anInteger=0, anObject=nil)→ anArray

Returns a new array, optionally with a size and initial value (that is, anInteger refer-
ences to the same anObject).

Array.new → []

Array.new(2) → [nil, nil]

Array.new(5, "A") → ["A", "A", "A", "A", "A"]

Array.new(2, Hash.new) → [{}, {}]

Instance methods
& arr & anOtherArray→ anArray

Set Intersection—Returns a new array containing elements common to the two arrays,
with no duplicates.

[1, 1, 3, 5] & [1, 2, 3] → [1, 3]

* arr * anInteger→ anArray
arr * aString→ anOtherString

Repetition—With a String argument, equivalent to arr.join(aString).Otherwise,
returns a new array built by concatenating the anInteger copies of arr.

[1, 2, 3] * 3 → [1, 2, 3, 1, 2, 3, 1, 2, 3]

+ arr + anOtherArray→ anArray

Concatenation—Returns a new array built by concatenating the two arrays together to
produce a third array.

ARRAY 255

A
rr

ay[1, 2, 3] + [4, 5] → [1, 2, 3, 4, 5]

– arr - anOtherArray→ anArray

Set Difference—Returns a new array that is a copy of the original array, removing any
items that also appear in anOtherArray and duplicated items.

[1, 1, 2, 2, 3, 3, 3, 4, 5] - [1, 2, 4] → [3, 5]

<< arr << anObject→ arr

Append—Pushes the given object on to the end of this array. This expression returns
the array itself, so several appends may be chained together. See also Array#push.

[1, 2] << "c" << "d" << [3, 4] → [1, 2, "c", "d", [3, 4]]

<=> arr <=> anOtherArray→−1, 0, +1

Comparison—Returns an integer −1, 0, or +1 if this array is less than, equal to, or
greater than anOtherArray. Each object in each array is compared (using <=>). If any
value isn’t equal, then that inequality is the return value. If all the values found are
equal, then the return is based on a comparison of the array lengths. Thus, two arrays
are “equal” according to Array#<=> if and only if they have the same length and the
value of each element is equal to the value of the corresponding element in the other
array.

["a", "a", "c"] <=> ["a", "b", "c"] → -1

[1, 2, 3, 4, 5, 6] <=> [1, 2] → 1

== arr == anOtherArray→ true or false

Equality—Two arrays are equal if they contain the same number of elements and if
each element is equal to (according to Object#==) the corresponding element in the
other array.

["a", "c"] == ["a", "c", 7] → false

["a", "c", 7] == ["a", "c", 7] → true

["a", "c", 7] == ["a", "d", "f"] → false

=== arr === anOtherArray→ true or false

Case Equality—Equality as evaluated by case expressions. For arrays, this is the same
as Array#==.

[] arr[anInteger]→ anObject or nil
arr[start, length]→ aSubArray or nil

arr[aRange]→ aSubArray or nil

Element Reference—Returns the element at index anInteger, or returns a subarray start-
ing at index start and continuing for length elements, or returns a subarray specified by
aRange. Negative indices count backward from the end of the array (−1 is the last
element). Returns nil if any indices are out of range.

A
rr

ay

256 CHAPTER 22. BUILT-IN CLASSES

a = ["a", "b", "c", "d", "e"]

a[2] + a[0] + a[1] → "cab"

a[6] → nil

a[1, 2] → ["b", "c"]

a[1..3] → ["b", "c", "d"]

a[4..7] → ["e"]

a[6..10] → nil

a[-3, 3] → ["c", "d", "e"]

[]= arr[anInteger] = anObject→ anObject
arr[start, length] = aSubArray→ aSubArray

arr[aRange] = aSubArray→ aSubArray

Element Assignment—Sets the element at index anInteger, or replaces a subarray start-
ing at index start and continuing for length elements, or replaces a subarray specified by
aRange. If anInteger is greater than the current capacity of the array, the array grows
automatically. A negative anInteger will count backward from the end of the array.
Inserts elements if length is zero. If subArray is nil, deletes elements from arr. An
IndexError is raised if a negative index points past the beginning of the array. See
also Array#push, Array#unshift.

a = Array.new → []

a[4] = "4"; a → [nil, nil, nil, nil, "4"]

a[0, 3] = [’a’, ’b’, ’c’]; a → ["a", "b", "c", nil, "4"]

a[1..2] = [1, 2]; a → ["a", 1, 2, nil, "4"]

a[0, 2] = "?"; a → ["?", 2, nil, "4"]

a[0..2] = "A"; a → ["A", "4"]

a[-1] = "Z"; a → ["A", "Z"]

a[1..-1] = nil; a → ["A"]

| arr | anOtherArray→ anArray

Set Union—Returns a new array by joining this array with anOtherArray, removing
duplicates.

["a", "b", "c"] | ["c", "d", "a"] → ["a", "b", "c", "d"]

assoc arr.assoc(anObject)→ anArray or nil

Searches through an array whose elements are also arrays comparing anObject with the
first element of each contained array using anObject.== . Returns the first contained
array that matches (that is, the first associated array), or nil if no match is found. See
also Array#rassoc.

s1 = ["colors", "red", "blue", "green"]

s2 = ["letters", "a", "b", "c"]

s3 = "foo"

a = [s1, s2, s3]

a.assoc("letters") → ["letters", "a", "b", "c"]

a.assoc("foo") → nil

at arr.at(anInteger)→ anObject or nil

Returns the element at index anInteger. A negative index counts from the end of arr.
Returns nil if the index is out of range. See also Array#[]. (Array#at is slightly
faster than Array#[], as it does not accept ranges and so on.)

ARRAY 257

A
rr

aya = ["a", "b", "c", "d", "e"]

a.at(0) → "a"

a.at(-1) → "e"

clear arr.clear→ arr

Removes all elements from arr.

a = ["a", "b", "c", "d", "e"]

a.clear → []

collect arr.collect {| obj | block } → anArray

Returns a new array by invoking block once for every element, passing each element as
a parameter to block. The result of block is used as the given element in the new array.
See also Array#collect!.

a = ["a", "b", "c", "d"]

a.collect {|x| x + "!" } → ["a!", "b!", "c!", "d!"]

a → ["a", "b", "c", "d"]

collect! arr.collect! {| obj | block } → arr

Invokes block once for each element of arr, replacing the element with the value
returned by block. See also Array#collect.

a = ["a", "b", "c", "d"]

a.collect! {|x| x + "!" } → ["a!", "b!", "c!", "d!"]

a → ["a!", "b!", "c!", "d!"]

compact arr.compact→ anArray

Returns a new array based on the arr with all nil elements removed.

["a", nil, "b", nil, "c", nil].compact → ["a", "b", "c"]

compact! arr.compact!→ arr or nil

Same as Array#compact, but modifies the receiver in place. Returns nil if no changes
were made.

["a", nil, "b", nil, "c"].compact! → ["a", "b", "c"]

["a", "b", "c"].compact! → nil

concat arr.concat(anOtherArray)→ arr

Appends the elements in anOtherArray to arr.

["a", "b"].concat(["c", "d"]) → ["a", "b", "c", "d"]

delete arr.delete(anObject)→ anObject or nil
arr.delete(anObject) { block } → anObject or nil

Deletes items from the self that are equal to anObject. If the item is not found, returns
nil. If the optional code block is given, returns the result of block if the item is not
found.

A
rr

ay

258 CHAPTER 22. BUILT-IN CLASSES

a = ["a", "b", "b", "b", "c"]

a.delete("b") → "b"

a → ["a", "c"]

a.delete("z") → nil

a.delete("z") { "not found" } → "not found"

delete_at arr.delete_at(anIndex)→ anObject or nil

Deletes the element at the specified index, returning that element, or nil if the index is
out of range. See also Array#slice!.

a = %w(ant bat cat dog)

a.delete_at(2) → "cat"

a → ["ant", "bat", "dog"]

a.delete_at(99) → nil

delete_if arr.delete_if { block } → arr

Deletes every element of arr for which block evaluates to true.

a = ["a", "b", "c"]

a.delete_if {|x| x >= "b" } → ["a"]

each arr.each {| item | block } → arr

Calls block once for each element in arr, passing that element as a parameter.

a = ["a", "b", "c"]

a.each {|x| print x, " -- " }

produces:

a -- b -- c --

each_index arr.each_index {| anIndex | block } → arr

Same as Array#each, but passes the index of the element instead of the element itself.

a = ["a", "b", "c"]

a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

empty? arr.empty?→ true or false

Returns true if arr array contains no elements.

[].empty? → true

eql? arr.eql?(anOtherArray)→ true or false

An array is equal to another array if the lengths are equal and each corresponding
element is equal (according to Object#eql?). See also Array#<=>. eql? is used for
Hash comparison.

["a", "b", "c"].eql?(["a", "b", "c"]) → true

["a", "b", "c"].eql?(["a", "b"]) → false

["a", "b", "c"].eql?(["b", "c", "d"]) → false

ARRAY 259

A
rr

ayfill arr.fill(anObject)→ arr
arr.fill(anObject, start 〈 , length 〉)→ arr

arr.fill(anObject, aRange)→ arr

Sets the selected elements of arr (which may be the entire array) to anObject. A start
of nil is equivalent to zero. A length of nil is equivalent to arr.length.

a = ["a", "b", "c", "d"]

a.fill("x") → ["x", "x", "x", "x"]

a.fill("z", 2, 2) → ["x", "x", "z", "z"]

a.fill("y", 0..1) → ["y", "y", "z", "z"]

first arr.first→ anObject or nil

Returns the first element of the array. If the array is empty, returns nil.

a = ["q", "r", "s", "t"]

a.first → "q"

flatten arr.flatten→ anArray

Returns a new array that is a one-dimensional flattening of this array (recursively). That
is, for every element that is an array, extract its elements into the new array.

s = [1, 2, 3] → [1, 2, 3]

t = [4, 5, 6, [7, 8]] → [4, 5, 6, [7, 8]]

a = [s, t, 9, 10] → [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]

a.flatten → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

flatten! arr.flatten!→ arr or nil

Same as Array#flatten, but modifies the receiver in place. Returns nil if no modi-
fications were made (i.e., arr contains no subarrays.)

a = [1, 2, [3, [4, 5]]]

a.flatten! → [1, 2, 3, 4, 5]

a.flatten! → nil

a → [1, 2, 3, 4, 5]

include? arr.include?(anObject)→ true or false

Returns true if the given object is present in arr (that is, if any object == anObject),
false otherwise.

a = ["a", "b", "c"]

a.include?("b") → true

a.include?("z") → false

index arr.index(anObject)→ anInteger or nil

Returns the index of the first object in arr such that the object == anObject. Returns
nil if no match is found.

a = ["a", "b", "c"]

a.index("b") → 1

a.index("z") → nil

A
rr

ay

260 CHAPTER 22. BUILT-IN CLASSES

Table 22.1. Template characters for Array#pack

Directive Meaning

@ Moves to absolute position
A ASCII string (space padded, count is width)
a ASCII string (null padded, count is width)
B Bit string (descending bit order)
b Bit string (ascending bit order)
C Unsigned char
c Char
d Double-precision float, native format
E Double-precision float, little-endian byte order
e Single-precision float, little-endian byte order
f Single-precision float, native format
G Double-precision float, network (big-endian) byte order
g Single-precision float, network (big-endian) byte order
H Hex string (high nibble first)
h Hex string (low nibble first)
I Unsigned integer
i Integer
L Unsigned long
l Long

M Quoted printable, MIME encoding (see RFC2045)
m Base64 encoded string
N Long, network (big-endian) byte order
n Short, network (big-endian) byte-order
P Pointer to a structure (fixed-length string)
p Pointer to a null-terminated string
S Unsigned short
s Short
U UTF-8
u UU-encoded string
V Long, little-endian byte order
v Short, little-endian byte order
X Back up a byte
x Null byte
Z Same as “A”

ARRAY 261

A
rr

ayindexes arr.indexes(i1, i2, ... iN)→ anArray

Returns a new array consisting of elements at the given indices. May insert nil for
indices out of range.

a = ["a", "b", "c", "d", "e", "f", "g"] → -:2: warning:

Array#indexes is

deprecated; use

Array#select

a.indexes(0, 2, 4) → ["a", "c",

"e"]\n-:3: warning:

Array#indexes is

deprecated; use

Array#select

a.indexes(0, 2, 4, 12) → ["a", "c", "e", nil]

indices arr.indices(i1, i2, ... iN)→ anArray

Synonym for Array#indexes.

join arr.join(aSepString=$,)→ aString

Returns a string created by converting each element of the array to a string, separated
by aSepString.

["a", "b", "c"].join → "abc"

["a", "b", "c"].join("-") → "a-b-c"

last arr.last→ anObject or nil

Returns the last element of arr. If the array is empty, returns nil.

["w", "x", "y", "z"].last → "z"

length arr.length→ anInteger

Returns the number of elements in arr. May be zero.

[1, 2, 3, 4, 5].length → 5

map! arr.map! {| obj | block } → arr

Synonym for Array#collect!.

nitems arr.nitems→ anInteger

Returns the number of non-nil elements in arr. May be zero.

[1, nil, 3, nil, 5].nitems → 3

pack arr.pack (aTemplateString)→ aBinaryString

Packs the contents of arr into a binary sequence according to the directives in aTem-
plateString (see Table 22.1 on the preceding page). Directives “A,” “a,” and “Z” may
be followed by a count, which gives the width of the resulting field. The remaining
directives also may take a count, indicating the number of array elements to convert. If
the count is an asterisk (“*”), all remaining array elements will be converted. Any of
the directives “sSiIlL” may be followed by an underscore (“_”) to use the underlying

A
rr

ay

262 CHAPTER 22. BUILT-IN CLASSES

platform’s native size for the specified type; otherwise, they use a platform-independent
size. Spaces are ignored in the template string. See also String#unpack on page 346.

a = ["a", "b", "c"]

n = [65, 66, 67]

a.pack("A3A3A3") → "a␣␣b␣␣c␣␣"

a.pack("a3a3a3") → "a\000\000b\000\000c\000\000"

n.pack("ccc") → "ABC"

pop arr.pop→ anObject or nil

Removes the last element from arr and returns it, or nil if the array is empty (as with
a stack).

a = ["a", "m", "z"]

a.pop → "z"

a → ["a", "m"]

push arr.push(〈 anObject 〉+)→ arr

Appends the given argument(s) to the end of arr (as with a stack).

a = ["a", "b", "c"]

a.push("d", "e", "f") → ["a", "b", "c", "d", "e", "f"]

rassoc arr.rassoc(key)→ anArray or nil

Searches through the array whose elements are also arrays. Compares key with the
second element of each contained array using ==. Returns the first contained array that
matches. See also assoc.

a = [[1, "one"], [2, "two"], [3, "three"], ["ii", "two"]]

a.rassoc("two") → [2, "two"]

a.rassoc("four") → nil

reject! arr.reject! { block } → arr or nil

Equivalent to Array#delete_if, but returns nil if no changes were made.

replace arr.replace(anOtherArray)→ arr

Replaces the contents of arr with the contents of anOtherArray, truncating or expand-
ing if necessary.

a = ["a", "b", "c", "d", "e"]

a.replace(["x", "y", "z"]) → ["x", "y", "z"]

a → ["x", "y", "z"]

reverse arr.reverse→ anArray

Returns a new array using arr’s elements in reverse order.

["a", "b", "c"].reverse → ["c", "b", "a"]

[1].reverse → [1]

reverse! arr.reverse!→ arr or nil

Same as reverse, but returns nil if arr is unchanged (arr.length is zero or one).

ARRAY 263

A
rr

aya = ["a", "b", "c"]

a.reverse! → ["c", "b", "a"]

a → ["c", "b", "a"]

[1].reverse! → nil

reverse_each arr.reverse_each { block }

Same as Array#each, but traverses arr in reverse order.

a = ["a", "b", "c"]

a.reverse_each {|x| print x, " " }

produces:
c b a

rindex arr.rindex(anObject)→ anInteger or nil

Returns the index of the last object in arr such that the object == anObject. Returns
nil if no match is found.
a = ["a", "b", "b", "b", "c"]

a.rindex("b") → 3

a.rindex("z") → nil

shift arr.shift→ anObject or nil

Returns the first element of arr and removes it (shifting all other elements down by
one). Returns nil if the array is empty.

args = ["-m", "-q", "filename"]

args.shift → "-m"

args → ["-q", "filename"]

size arr.size→ anInteger

Synonym for Array#length.

slice arr.slice(anInteger)→ anObject
arr.slice(start, length)→ aSubArray

arr.slice(aRange)→ aSubArray

Synonym for Array#[].

a = ["a", "b", "c", "d", "e"]

a.slice(2) + a.slice(0) + a.slice(1) → "cab"

a.slice(6) → nil

a.slice(1, 2) → ["b", "c"]

a.slice(1..3) → ["b", "c", "d"]

a.slice(4..7) → ["e"]

a.slice(6..10) → nil

a.slice(-3, 3) → ["c", "d", "e"]

slice! arr.slice!(anInteger)→ anObject or nil
arr.slice!(start, length)→ aSubArray or nil

arr.slice!(aRange)→ aSubArray or nil

Deletes the element(s) given by an index (optionally with a length) or by a range.
Returns the deleted object, subarray, or nil if the index is out of range. Equivalent to:

A
rr

ay

264 CHAPTER 22. BUILT-IN CLASSES

def slice!(*args)

result = self[*args]

self[*args] = nil

result

end

a = ["a", "b", "c"]

a.slice!(1) → "b"

a → ["a", "c"]

a.slice!(-1) → "c"

a → ["a"]

a.slice!(100) → nil

a → ["a"]

sort arr.sort→ anArray
arr.sort {| a,b | block } → anArray

Returns a new array created by sorting arr. Comparisons for the sort will be done using
the <=> operator or using an optional code block. The block implements a comparison
between a and b, returning−1, 0, or +1.

a = ["d", "a", "e", "c", "b"]

a.sort → ["a", "b", "c", "d", "e"]

a.sort {|x,y| y <=> x } → ["e", "d", "c", "b", "a"]

sort! arr.sort!→ arr
arr.sort! {| a,b | block } → arr

Same as Array#sort, but modifies the receiver in place. arr is effectively frozen while
a sort is in progress.

a = ["d", "a", "e", "c", "b"]

a.sort! → ["a", "b", "c", "d", "e"]

a → ["a", "b", "c", "d", "e"]

to_a arr.to_a→ arr

Returns arr.

to_ary arr.to_ary→ arr

Synonym for Array#to_a.

to_s arr.to_s→ aString

Returns arr.join.

["a", "e", "i", "o"].to_s → "aeio"

uniq arr.uniq→ anArray

Returns a new array by removing duplicate values in arr.

a = ["a", "a", "b", "b", "c"]

a.uniq → ["a", "b", "c"]

BIGNUM 265

B
ig

nu
muniq! arr.uniq!→ arr or nil

Same as Array#uniq, but modifies the receiver in place. Returns nil if no changes are
made (that is, no duplicates are found).

a = ["a", "a", "b", "b", "c"]

a.uniq! → ["a", "b", "c"]

b = ["a", "b", "c"]

b.uniq! → nil

unshift arr.unshift(anObject)→ arr

Prepends anObject to the front of arr, and shifts all other elements up one.

a = ["b", "c", "d"]

a.unshift("a") → ["a", "b", "c", "d"]

Class Bignum < Integer

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created
automatically when integer calculations would otherwise overflow a Fixnum. When a
calculation involving Bignum objects returns a result that will fit in a Fixnum, the result
is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an
infinite-length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and param-
eter passing work with references to objects, not the objects themselves.

Instance methods
Arithmetic operations

Performs various arithmetic operations on big.

big + aNumeric Addition
big – aNumeric Subtraction
big * aNumeric Multiplication
big / aNumeric Division
big % aNumeric Modulo
big ** aNumeric Exponentiation

Bit operations

Performs various operations on the binary representations of the Bignum.

~ big Invert bits
big | aNumeric Bitwise OR

big & aNumeric Bitwise AND

big ^ aNumeric Bitwise EXCLUSIVE OR

big << aNumeric Left-shift aNumeric bits
big >> aNumeric Right-shift aNumeric bits (with sign extension)

B
in

di
ng

266 CHAPTER 22. BUILT-IN CLASSES

<=> big <=> aNumeric→−1, 0, +1

Comparison—Returns−1, 0, or +1 depending on whether big is less than, equal to, or
greater than aNumeric. This is the basis for the tests in Comparable.

[] big[n]→ 0, 1

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where
big[0] is the least significant bit.

a = 9**15

50.downto(0) do |n|

print a[n]

end

produces:

000101110110100000111000011110010100111100010111001

size big.size→ anInteger

Returns the number of bytes in the machine representation of big.

(256**10 - 1).size → 12

(256**20 - 1).size → 20

(256**40 - 1).size → 40

to_f big.to_f→ aFloat

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

to_i big.to_i→ big

Returns big.

to_s big.to_s→ aString

Returns a string containing the decimal representation of big.

Class Binding < Object

Objects of class Binding encapsulate the execution context at some particular place in
the code and retain this context for future use. The variables, methods, value of self,
and possibly an iterator block that can be accessed in this context are all retained.
Binding objects can be created using Kernel#binding, and are made available to the
callback of Kernel#set_trace_func.

These binding objects can be passed as the second argument of the Kernel#eval

method, establishing an environment for the evaluation.

CLASS 267

C
la

ss

class Demo

def initialize(n)

@secret = n

end

def getBinding

return binding()

end

end

k1 = Demo.new(99)

b1 = k1.getBinding

k2 = Demo.new(-3)

b2 = k2.getBinding

eval("@secret", b1) → 99

eval("@secret", b2) → -3

eval("@secret") → nil

Binding objects have no class-specific methods.

Class Class < Module

Classes in Ruby are first-class objects—each is an instance of class Class.

When a new class is created (typically using class Name ... end), an object of type
Class is created and assigned to a global constant (Name in this case). When Name.new
is called to create a new object, the new method in Class is run by default. This can be
demonstrated by overriding new in Class:

class Class

alias oldNew new

def new(*args)

print "Creating a new ", self.name, "\n"

oldNew(*args)

end

end

class Name

end

n = Name.new

produces:
Creating a new Name

Class methods
inherited aClass.inherited(aSubClass)

This is a singleton method (per class) invoked by Ruby when a subclass of aClass is
created. The new subclass is passed as a parameter.

class Top

def Top.inherited(sub)

print "New subclass: ", sub, "\n"

end

end

C
on

tin
ua

tio
n

268 CHAPTER 22. BUILT-IN CLASSES

class Middle < Top

end

class Bottom < Middle

end

produces:
New subclass: Middle

New subclass: Bottom

new Class.new(aSuperClass=Object)→ aClass

Creates a new anonymous (unnamed) class with the given superclass (or Object if no
parameter is given).

Instance methods
new aClass.new(〈 args 〉∗)→ anObject

Creates a new object of aClass’s class, then invokes that object’s initializemethod,
passing it args.

superclass aClass.superclass→ aSuperClass or nil

Returns the superclass of aClass, or nil.

Class.superclass → Module

Object.superclass → nil

Class Continuation < Object

Continuation objects are generated by Kernel#callcc. They hold a return address
and execution context, allowing a nonlocal return to the end of the callcc block from
anywhere within a program. Continuations are somewhat analogous to a structured ver-
sion of C’s setjmp/longjmp (although they contain more state, so you might consider
them closer to threads).

For instance:

arr = ["Freddie", "Herbie", "Ron", "Max", "Ringo"]

callcc{|$cc|}

puts(message = arr.shift)

$cc.call unless message =~ /Max/

produces:
Freddie

Herbie

Ron

Max

This (somewhat contrived) example allows the inner loop to abandon processing early:

callcc {|cont|

for i in 0..4

print "\n#{i}: "

for j in i*5...(i+1)*5

DIR 269

D
ir

cont.call() if j == 17

printf "%3d", j

end

end

}

print "\n"

produces:

0: 0 1 2 3 4

1: 5 6 7 8 9

2: 10 11 12 13 14

3: 15 16

Instance methods
call cont.call(〈 args 〉∗)

Invokes the continuation. The program continues from the end of the callcc block.
If no arguments are given, the original callcc returns nil. If one argument is given,
callcc returns it. Otherwise, an array containing args is returned.

callcc {|cont| cont.call } → nil

callcc {|cont| cont.call 1 } → 1

callcc {|cont| cont.call 1, 2, 3 } → [1, 2, 3]

Class Dir < Object

Objects of class Dir are directory streams representing directories in the underlying
file system. They provide a variety of ways to list directories and their contents. See
also File, page 275.

The directory used in these examples contains the two regular files (config.h and
main.rb), the parent directory (..), and the directory itself (.).

Mixes in

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
[] Dir[aString]→ anArray

Returns anArray of filenames found by expanding the pattern given in aString. Note
that this pattern is not a regexp (it’s closer to a shell glob) and may contain the following
metacharacters:

D
ir

270 CHAPTER 22. BUILT-IN CLASSES

** Matches subdirectories recursively
* Matches zero or more characters
? Matches any single character
[charSet] Matches any character from the given set of characters. A

range of characters is written as charFrom-charTo. The set
may be negated with an initial uparrow (^).

{ opt, opt, ... } Matches any one of the optional strings

Dir["config.?"] → ["config.h"]

Dir["*.[a-z][a-z]"] → ["main.rb"]

Dir["*.[^r]*"] → ["config.h"]

Dir["*.{rb,h}"] → ["main.rb", "config.h"]

Dir["*"] → ["main.rb", "config.h"]

chdir Dir.chdir(〈 aString 〉)→ 0

Changes the current working directory of the process to the given string. When called
without an argument, changes the directory to the value of the environment variable
HOME, or LOGDIR. Raises a SystemCallError (probablyErrno::ENOENT) if the target
directory does not exist.

Dir.chdir("/var/spool/mail") → 0

Dir.pwd → "/var/spool/mail"

chroot Dir.chroot(aString)→ 0

Changes this process’s idea of the file system root. Only a privileged process may make
this call. Not available on all platforms. On Unix systems, see chroot(2) for more
information.

Dir.chdir("/production/secure/root")

Dir.chroot("/production/secure/root") → 0

Dir.pwd → "/"

delete Dir.delete(aString)→ 0

Deletes the named directory. Raises a subclass of SystemCallError if the directory
isn’t empty.

entries Dir.entries(aString)→ anArray

Returns an array containing all of the filenames in the given directory. Will raise a
SystemCallError if the named directory doesn’t exist.

Dir.entries("testdir") → [".", "..", "main.rb", "config.h"]

foreach Dir.foreach(aString) {| filename | block } → nil

Calls the block once for each entry in the named directory, passing the filename of each
entry as a parameter to the block.

Dir.foreach("testdir") {|x| puts("Got " + x) }

produces:

DIR 271

D
ir

Got .

Got ..

Got main.rb

Got config.h

getwd Dir.getwd→ aString

Returns the path to the current working directory of this process as a string.

Dir.chdir("/tmp") → 0

Dir.getwd → "/tmp"

glob Dir.glob(aString)→ anArray

Synonym for Dir.[].

mkdir Dir.mkdir(aString 〈 , anInteger 〉)→ 0

Makes a new directory named by aString, with permissions specified by the optional
parameter anInteger. The permissions may be modified by the value of File.umask,
and are ignored on NT. Raises a SystemCallError if the directory cannot be created.
See also the discussion of permissions on page 275.

new Dir.new(aString)→ aDir

Returns a new directory object for the named directory.

open Dir.open(aString)→ aDir
Dir.open(aString) {| aDir | block } → nil

With no block, open is a synonym for Dir.new. If a block is present, it is passed aDir
as a parameter. The directory is closed at the end of the block, and Dir.open returns
nil.

pwd Dir.pwd→ aString

Synonym for Dir.getwd.

rmdir Dir.rmdir(aString)→ true

Synonym for Dir.delete.

unlink Dir.unlink(aString)→ true

Synonym for Dir.delete.

Instance methods
close dir.close→ nil

Closes the directory stream. Any further attempts to access dir will raise an IOError.

d = Dir.new("testdir")

d.close → nil

each dir.each { block } → dir

Calls the block once for each entry in this directory, passing the filename of each entry
as a parameter to the block.

D
ir

272 CHAPTER 22. BUILT-IN CLASSES

d = Dir.new("testdir")

d.each {|x| puts ("Got " + x) }

produces:
Got .

Got ..

Got main.rb

Got config.h

read dir.read→ aString or nil

Reads the next entry from dir and returns it as a string. Returns nil at the end of the
stream.
d = Dir.new("testdir")

d.read → "."

d.read → ".."

d.read → "main.rb"

rewind dir.rewind→ dir

Repositions dir to the first entry.

d = Dir.new("testdir")

d.read → "."

d.rewind → #<Dir:0x395258>

d.read → "."

seek dir.seek(anInteger)→ dir

Seeks to a particular location in dir. anInteger must be a value returned by Dir#tell.

d = Dir.new("testdir")

d.read → "."

i = d.tell

d.read → ".."

d.seek(i) → #<Dir:0x39508c>

d.read → ".."

tell dir.tell→ anInteger

Returns the current position in dir. See also Dir#seek.

d = Dir.new("testdir")

d.tell → 0

d.read → "."

d.tell → 2

EXCEPTION 273

E
xc

ep
tio

n

Class Exception < Object

Descendents of class Exception are used to communicate between raise methods
and rescue statements in begin/end blocks. Exception objects carry information
about the exception—its type (the exception’s class name), an optional descriptive
string, and optional traceback information.

The standard library defines the exceptions shown in Figure 22.1 on the following page.

Class methods
exception Exception.exception(〈 aString 〉)→ anException

Creates and returns a new exception object, optionally setting the message to aString.

Instance methods
backtrace exc.backtrace→ anArray

Returns any backtrace associated with the exception. The backtrace is an array of
strings, each containing either “filename:lineNo: in ‘method’” or “filename:lineNo.”

def a

raise "boom"

end

def b

a()

end

begin

b()

rescue => detail

print detail.backtrace.join("\n")

end

produces:
prog.rb:2:in `a’

prog.rb:6:in `b’

prog.rb:10

exception exc.exception(〈 aString 〉)→ anException or exc

With no argument, returns the receiver. Otherwise, creates a new exception object of
the same class as the receiver, but with a different message.

message exc.message→ aString

Returns the message associated with this exception.

set_backtrace exc.set_backtrace(anArray)→ anArray

Sets the backtrace information associated with exc. The argument must be an array of
String objects in the format described in Exception#backtrace.

F
al

se
C

la
ss

274 CHAPTER 22. BUILT-IN CLASSES

Figure 22.1. Standard exception hierarchy

Exception

fatal (used internally by Ruby)
Interrupt

NoMemoryError

SignalException

ScriptError

LoadError

NameError

NotImplementedError

SyntaxError

StandardError

ArgumentError

FloatDomainError

IndexError

IOError

EOFError

LocalJumpError

RegexpError

RuntimeError

SecurityError

SystemCallError

system-dependent exceptions
SystemStackError

ThreadError

TypeError

ZeroDivisionError

SystemExit

Class FalseClass < Object

The global value false is the only instance of class FalseClass and represents a log-
ically false value in boolean expressions. The class provides operators allowing false

to participate correctly in logical expressions.

Instance methods
& false & anObject→ false

And—Returns false. anObject is always evaluated as it is the argument to a method
call—there is no short-circuit evaluation in this case.

^ false ^ anObject→ true or false

Exclusive Or—If anObject is nil or false, returns false; otherwise, returns true.

| false | anObject→ true or false

Or—Returns false if anObject is nil or false; true otherwise.

FILE 275

F
ile

Class File < IO

A File is an abstraction of any file object accessible by the program and is closely
associated with class IO, page 297. File includes the methods of module FileTest

as class methods, allowing you to write (for example) File.exist?("foo").

In this section, permission bits are a platform-specific set of bits that indicate permis-
sions of a file. On Unix-based systems, permissions are viewed as a set of three octets,
for the owner, the group, and the rest of the world. For each of these entities, permis-
sions may be set to read, write, or execute (or search, if a directory) the file:

Owner Group Other
r w x r w x r w x
4 2 1 4 2 1 4 2 1

The permission bits 0644 (in octal) would thus be interpreted as read/write for owner,
and read-only for group and other. Higher-order bits may also be used to indicate the
type of file (plain, directory, pipe, socket, and so on) and various other special features.

On non-Posix operating systems, there may be only the ability to make a file read-
only or not. In this case, the remaining permission bits will be synthesized to resemble
typical values. For instance, on Windows NT the default permission bits are 0644,
which means read/write for owner, read-only for all others. The only change that can
be made is to make the file read-only, which is reported as 0444.

Mixes in

FileTest:
blockdev?, chardev?, directory?, executable?, executable_real?,

exist?, exists?, file?, grpowned?, owned?, pipe?, readable?,

readable_real?, setgid?, setuid?, size, size?, socket?, sticky?,

symlink?, writable?, writable_real?, zero?

Class methods
atime File.atime(fileName)→ aTime

Returns the last access time for the named file.

File.atime("testfile") → Thu Dec 26 20:04:37 MSK 2002

basename File.basename(fileName 〈 , aSuffix 〉)→ aNewString

Returns the last component of the filename given in fileName, which must be formed
using forward slashes (“/ ”) regardless of the separator used on the local file system. If
aSuffix is given and present at the end of fileName, it is removed.

File.basename("/home/gumby/work/ruby.rb") → "ruby.rb"

File.basename("/home/gumby/work/ruby.rb", ".rb") → "ruby"

chmod File.chmod(aModeInt 〈 , fileName 〉+)→ anInteger

Changes permission bits on the named file(s) to the bit pattern represented by aMode-

F
ile

276 CHAPTER 22. BUILT-IN CLASSES

Int. Actual effects are operating system dependent (see the beginning of this section).
On Unix systems, see chmod(2) for details. Returns the number of files processed.

File.chmod(0644, "testfile", "out") → 2

chown File.chown(anOwnerInt, aGroupInt 〈 , fileName 〉+)→ anInteger

Changes the owner and group of the named file(s) to the given numeric owner and
group id’s. Only a process with superuser privileges may change the owner of a file.
The current owner of a file may change the file’s group to any group to which the
owner belongs. A nil or −1 owner or group id is ignored. Returns the number of files
processed.

File.chown(nil, 100, "testfile")

ctime File.ctime(fileName)→ aTime

Returns the change time for the named file (the time at which directory information
about the file was changed, not the file itself).

File.ctime("testfile") → Thu Dec 26 20:05:04 MSK 2002

delete File.delete(〈 fileName 〉+)→ aFixnum

Deletes the named file(s). Returns the number of files processed. See also Dir.rmdir.

File.new("testrm", "w+").close → nil

File.delete("testrm") → 1

dirname File.dirname(fileName)→ fileName

Returns all components of the filename given in fileName except the last one. The
filename must be formed using forward slashes (“/”) regardless of the separator used
on the local file system.

File.dirname("/home/gumby/work/ruby.rb") → "/home/gumby/work"

expand_path File.expand_path(fileName 〈 , aDirString 〉)→ fileName

Converts a pathname to an absolute pathname. Relative paths are referenced from the
current working directory of the process unless aDirString is given, in which case it
will be used as the starting point. The given pathname may start with a “~”, which
expands to the process owner’s home directory (the environment variable HOME must
be set correctly). “~user” expands to the named user’s home directory.

File.expand_path("~oracle/bin")

File.expand_path("../../bin", "/tmp/x")

ftype File.ftype(fileName)→ fileType

Identifies the type of the named file; the return string is one of “file”, “directory”,
“characterSpecial”, “blockSpecial”, “fifo”, “link”, or “socket”.

File.ftype("testfile") → "file"

File.ftype("/dev/tty") → "characterSpecial"

File.ftype("/tmp/.X11-unix/X0") → "socket"

FILE 277

F
ile

join File.join(〈 aString 〉+)→ fileName

Returns a new string formed by joining the strings using File::SEPARATOR (see
Table 22.2 on the next page).

File.join("usr", "mail", "gumby") → "usr/mail/gumby"

link File.link(anOldName, aNewName)→ 0

Creates a new name for an existing file using a hard link. Will not overwrite aNew-
Name if it already exists (raising a subclass of SystemCallError). Not available on
all platforms.

File.link("testfile", ".testfile") → 0

IO.readlines(".testfile")[0] → "This is line one\n"

lstat File.lstat(fileName)→ aStat

Same as IO#stat, but does not follow the last symbolic link. Instead, reports on the
link itself.

File.symlink("testfile", "link2test") → 0

File.stat("testfile").size → 66

File.lstat("link2test").size → 8

File.stat("link2test").size → 66

mtime File.mtime(fileName)→ aTime

Returns the modification time for the named file.

File.mtime("testfile") → Thu Dec 26 19:58:03 MSK 2002

new File.new(fileName, aModeString="r")→ file
File.new(fileName 〈 , aModeNum 〈 , aPermNum 〉 〉)→ file

Opens the file named by fileName according to aModeString (default is “r”) and returns
a new File object. See Table 22.5 on page 298 for a description of aModeString.
The file mode may optionally be specified as a Fixnum by or-ing together the flags
described in Table 22.3 on page 279. Optional permission bits may be given in aPermNum.
These mode and permission bits are platform dependent; on Unix systems, see open(2)
for details.

f = File.new("testfile", "r")

f = File.new("newfile", "w+")

f = File.new("newfile", File::CREAT|File::TRUNC|File::RDWR, 0644)

open File.open(fileName, aModeString="r")→ file
File.open(fileName 〈 , aModeNum 〈 , aPermNum 〉 〉)→ file
File.open(fileName, aModeString="r") {| file | block } → nil

File.open(fileName 〈 , aModeNum 〈 , aPermNum 〉 〉) {| file | block } → nil

With no associated block, open is a synonym for File.new. If the optional code block
is given, it will be passed file as an argument, and the file will automatically be closed
when the block terminates. In this instance, File.open returns nil.

F
ile

278 CHAPTER 22. BUILT-IN CLASSES

Table 22.2. Path separator constants (platform-specific)

ALT_SEPARATOR Alternate path separator.
PATH_SEPARATOR Character that separates filenames in a search path (such as “:” or

“;”).
SEPARATOR Character that separates directory components in a filename (such

as “ \” or “/ ”).
Separator Alias for SEPARATOR.

readlink File.readlink(fileName)→ fileName

Returns the given symbolic link as a string. Not available on all platforms.

File.symlink("testfile", "link2test") → 0

File.readlink("link2test") → "testfile"

rename File.rename(anOldName, aNewName)→ 0

Renames the given file to the new name. Raises a SystemCallError if the file cannot
be renamed.

File.rename("afile", "afile.bak") → 0

size File.size(fileName)→ anInteger

Returns the size of the file in bytes.

File.size("testfile") → 66

split File.split(fileName)→ anArray

Splits the given string into a directory and a file component and returns them in a two-
element array. See also File.dirname and File.basename.

File.split("/home/gumby/.profile") → ["/home/gumby", ".profile"]

stat File.stat(fileName)→ aStat

Returns a File::Stat object for the named file (see File::Stat, page 281).

File.stat("testfile").mtime → Thu Dec 26 19:58:03 MSK 2002

symlink File.symlink(anOldName, aNewName)→ 0 or nil

Creates a symbolic link called aNewName for the existing file anOldName. Returns
nil on all platforms that do not support symbolic links.

File.symlink("testfile", "link2test") → 0

truncate File.truncate(fileName, anInteger)→ 0

Truncates the file fileName to be at most anInteger bytes long. Not available on all
platforms.

FILE 279

F
ile

Table 22.3. Open-mode constants

APPEND Open the file in append mode; all writes will occur at end of file.
CREAT Create the file on open if it does not exist.
EXCL When used with CREAT, open will fail if the file exists.
NOCTTY When opening a terminal device (see IO#isatty on page 302), do not

allow it to become the controlling terminal.
NONBLOCK Open the file in nonblocking mode.
RDONLY Open for reading only.
RDWR Open for reading and writing.
TRUNC Open the file and truncate it to zero length if the file exists.
WRONLY Open for writing only.

f = File.new("out", "w")

f.write("1234567890") → 10

f.close → nil

File.truncate("out", 5) → 0

File.size("out") → 5

umask File.umask(〈 anInteger 〉)→ anInteger

Returns the current umask value for this process. If the optional argument is given, set
the umask to that value and return the previous value. Umask values are subtracted
from the default permissions; so a umask of 0222 would make a file read-only for
everyone. See also the discussion of permissions on page 275.

File.umask(0006) → 18

File.umask → 6

unlink File.unlink(〈 fileName 〉+)→ anInteger

Synonym for File.delete. See also Dir.rmdir.

utime File.utime(anAccessTime, aModTime 〈 , fileName 〉+)→ aFixnum

Changes the access and modification times on a number of files. The times must be
instances of class Time or integers representing the number of seconds since epoch.
Returns the number of files processed. Not available on all platforms.

File.utime(0, 0, "testfile") → 1

File.mtime("testfile") → Thu Jan 01 03:00:00 MSK

1970

File.utime(0, Time.now, "testfile") → 1

File.mtime("testfile") → Thu Dec 26 20:05:05 MSK

2002

F
ile

280 CHAPTER 22. BUILT-IN CLASSES

Instance methods
atime file.atime→ aTime

Returns the last access time for file, or epoch if file has not been accessed.

File.new("testfile").atime → Thu Jan 01 03:00:00 MSK 1970

chmod file.chmod(aModeInt)→ 0

Changes permission bits on file to the bit pattern represented by aModeInt. Actual
effects are platform dependent; on Unix systems, see chmod(2) for details. See the
discussion of permissions on page 275.

f = File.new("out", "w");

f.chmod(0644) → 0

chown file.chown(anOwnerInt, aGroupInt)→ 0

Changes the owner and group of file to the given numeric owner and group id’s. Only
a process with superuser privileges may change the owner of a file. The current owner
of a file may change the file’s group to any group to which the owner belongs. A nil

or −1 owner or group id is ignored.

File.new("testfile").chown(502, 1000)

ctime file.ctime→ aTime

Returns the change time for file (that is, the time directory information about the file
was changed, not the file itself).

File.new("testfile").ctime → Thu Dec 26 20:05:05 MSK 2002

flock file.flock (aLockingConstant)→ 0 or false

Locks or unlocks a file according to aLockingConstant (a logical or of the values in
Table 22.4 on the next page). Returns false if File::LOCK_NB is specified and the
operation would otherwise have blocked. Not available on all platforms.

File.new("testfile").flock(File::LOCK_UN) → 0

lstat file.lstat→ aStat

Same as IO#stat, but does not follow the last symbolic link. Instead, reports on the
link itself.

File.symlink("testfile", "link2test") → 0

File.stat("testfile").size → 66

f = File.new("link2test")

f.lstat.size → 8

f.stat.size → 66

mtime file.mtime→ aTime

Returns the modification time for file.

File.new("testfile").mtime → Thu Dec 26 20:05:05 MSK 2002

FILE::STAT 281

F
ile

::S
ta

t

Table 22.4. Lock-mode constants
LOCK_EX Exclusive lock. Only one process may hold an exclusive lock for a given

file at a time.
LOCK_NB Don’t block when locking. May be combined with other lock options using

logical or.
LOCK_SH Shared lock. Multiple processes may each hold a shared lock for a given

file at the same time.
LOCK_UN Unlock.

path file.path→ fileName

Returns the pathname used to create file as a string.

File.new("testfile").path → "testfile"

truncate file.truncate(anInteger)→ 0

Truncates file to at most anInteger bytes. The file must be opened for writing. Not
available on all platforms.

f = File.new("out", "w")

f.syswrite("1234567890") → 10

f.truncate(5) → 0

f.close() → nil

File.size("out") → 5

Class File::Stat < Object

Objects of class File::Stat encapsulate common status information for File objects.
The information is recorded at the moment the File::Stat object is created; changes
made to the file after that point will not be reflected. File::Stat objects are returned
by IO#stat, File.stat, File#lstat, and File.lstat. Many of these methods
return platform-specific values, and not all values are meaningful on all systems. See
also Kernel#test on page 389.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Instance methods
<=> statfile <=> anOtherStat→−1, 0, 1

Compares File::Stat objects by comparing their respective modification times.

f1 = File.new("f1", "w")

sleep 1

f2 = File.new("f2", "w")

f1.stat <=> f2.stat → -1

F
ile

::S
ta

t

282 CHAPTER 22. BUILT-IN CLASSES

atime statfile.atime→ aTime

Returns the last access time for this file as an object of class Time.

File.stat("testfile").atime → Thu Dec 26 20:04:37 MSK 2002

blksize statfile.blksize→ anInteger

Returns the native file system’s block size. Will return 0 on platforms that don’t support
this information.

File.stat("testfile").blksize → 4096

blockdev? statfile.blockdev?→ true or false

Returns true if the file is a block device, false if it isn’t or if the operating system
doesn’t support this feature.

File.stat("testfile").blockdev? → false

blocks statfile.blocks→ anInteger

Returns the number of native file system blocks allocated for this file, or 0 if the oper-
ating system doesn’t support this feature.

File.stat("testfile").blocks → 8

chardev? statfile.chardev?→ true or false

Returns true if the file is a character device, false if it isn’t or if the operating system
doesn’t support this feature.

File.stat("/dev/tty").chardev? → true

ctime statfile.ctime→ aTime

Returns the change time for statfile (that is, the time directory information about the
file was changed, not the file itself).

File.stat("testfile").ctime → Thu Dec 26 19:58:03 MSK 2002

dev statfile.dev→ aFixnum

Returns an integer representing the device on which statfile resides.

File.stat("testfile").dev → 2057

directory? statfile.directory?→ true or false

Returns true if statfile is a directory, false otherwise.

File.stat("testfile").directory? → false

File.stat(".").directory? → true

executable? statfile.executable?→ true or false

Returns true if statfile is executable or if the operating system doesn’t distinguish

FILE::STAT 283

F
ile

::S
ta

t

executable files from nonexecutable files. The tests are made using the effective owner
of the process.

File.stat("testfile").executable? → false

executable_real? statfile.executable_real?→ true or false

Same as executable?, but tests using the real owner of the process.

file? statfile.file?→ true or false

Returns true if statfile is a regular file (not a device file, pipe, socket, etc.).

File.stat("testfile").file? → true

ftype statfile.ftype→ fileType

Identifies the type of statfile. The return string is one of: “file”, “directory”, “char-
acterSpecial”, “blockSpecial”, “fifo”, “link”, or “socket”.

File.stat("/dev/tty").ftype → "characterSpecial"

gid statfile.gid→ aFixnum

Returns the numeric group id of the owner of statfile.

File.stat("testfile").gid → 518

grpowned? statfile.grpowned?→ true or false

Returns true if the effective group id of the process is the same as the group id of statfile.
On Windows NT, returns false.

File.stat("testfile").grpowned? → true

File.stat("/etc/passwd").grpowned? → false

ino statfile.ino→ aFixnum

Returns the inode number for statfile.

File.stat("testfile").ino → 457424

mode statfile.mode→ aFixnum

Returns an integer representing the permission bits of statfile. The meaning of the bits
is platform dependent; on Unix systems, see stat(2).

File.chmod(0644, "testfile") → 1

s = File.stat("testfile")

sprintf("%o", s.mode) → "100644"

mtime statfile.mtime→ aTime

Returns the modification time for statfile.

File.stat("testfile").mtime → Thu Dec 26 19:58:03 MSK 2002

F
ile

::S
ta

t

284 CHAPTER 22. BUILT-IN CLASSES

nlink statfile.nlink→ aFixnum

Returns the number of hard links to statfile.

File.stat("testfile").nlink → 1

File.link("testfile", "testfile.bak") → 0

File.stat("testfile").nlink → 2

owned? statfile.owned?→ true or false

Returns true if the effective user id of the process is the same as the owner of statfile.

File.stat("testfile").owned? → true

File.stat("/etc/passwd").owned? → false

pipe? statfile.pipe?→ true or false

Returns true if the operating system supports pipes and statfile is a pipe; false oth-
erwise.

rdev statfile.rdev→ aFixnum

Returns an integer representing the device type on which statfile resides. Returns 0 if
the operating system doesn’t support this feature.

File.stat("/dev/fd0").rdev → 512

readable? statfile.readable?→ true or false

Returns true if statfile is readable by the effective user id of this process.

File.stat("testfile").readable? → true

readable_real? statfile.readable_real?→ true or false

Returns true if statfile is readable by the real user id of this process.

File.stat("testfile").readable_real? → true

setgid? statfile.setgid?→ true or false

Returns true if statfile has the set-group-id permission bit set, false if it doesn’t or if
the operating system doesn’t support this feature.

File.stat("/usr/sbin/lpc").setgid? → false

setuid? statfile.setuid?→ true or false

Returns true if statfile has the set-user-id permission bit set, false if it doesn’t or if
the operating system doesn’t support this feature.

File.stat("/bin/su").setuid? → true

size statfile.size→ aFixnum

Returns the size of statfile in bytes.

File.stat("testfile").size → 66

FILE::STAT 285

F
ile

::S
ta

t

size? statfile.size?→ aFixnum or nil

Returns nil if statfile is a zero-length file; otherwise, returns the file size.

File.stat("testfile").size? → 66

socket? statfile.socket?→ true or false

Returns true if statfile is a socket, false if it isn’t or if the operating system doesn’t
support this feature.

File.stat("testfile").socket? → false

sticky? statfile.sticky?→ true or false

Returns true if statfile has its sticky bit set, false if it doesn’t or if the operating
system doesn’t support this feature.

File.stat("testfile").sticky? → false

symlink? statfile.symlink?→ true or false

Returns true if statfile is a symbolic link, false if it isn’t or if the operating sys-
tem doesn’t support this feature. As File.stat automatically follows symbolic links,
symlink? will always be false for an object returned by File.stat.

File.symlink("testfile", "alink") → 0

File.stat("alink").symlink? → false

File.lstat("alink").symlink? → true

uid statfile.uid→ aFixnum

Returns the numeric user id of the owner of statfile.

File.stat("testfile").uid → 514

writable? statfile.writable?→ true or false

Returns true if statfile is writable by the effective user id of this process.

File.stat("testfile").writable? → true

writable_real? statfile.writable_real?→ true or false

Returns true if statfile is writable by the real user id of this process.

File.stat("testfile").writable_real? → true

zero? statfile.zero?→ true or false

Returns true if statfile is a zero-length file; false otherwise.

File.stat("testfile").zero? → false

F
ix

nu
m

286 CHAPTER 22. BUILT-IN CLASSES

Class Fixnum < Integer

A Fixnum holds Integer values that can be represented in a native machine word
(minus 1 bit). If any operation on a Fixnum exceeds this range, the value is automati-
cally converted to a Bignum.

Fixnum objects have immediate value. This means that when they are assigned or
passed as parameters, the actual object is passed, rather than a reference to that object.
Assignment does not alias Fixnum objects. There is effectively only one Fixnum object
instance for any given integer value, so, for example, you cannot add a singleton method
to a Fixnum.

Instance methods
Arithmetic operations

Performs various arithmetic operations on fix.

fix + aNumeric Addition
fix – aNumeric Subtraction
fix * aNumeric Multiplication
fix / aNumeric Division
fix % aNumeric Modulo
fix ** aNumeric Exponentiation

Bit operations

Performs various operations on the binary representations of the Fixnum.

~ fix Invert bits
fix | aNumeric Bitwise OR

fix & aNumeric Bitwise AND

fix ^ aNumeric Bitwise EXCLUSIVE OR

fix << aNumeric Left-shift aNumeric bits
fix >> aNumeric Right-shift aNumeric bits (with sign extension)

<=> fix <=> aNumeric→−1, 0, +1

Comparison—Returns−1, 0, or +1 depending on whether fix is less than, equal to, or
greater than aNumeric. This is the basis for the tests in Comparable.

[] fix[n]→ 0, 1

Bit Reference—Returns the nth bit in the binary representation of fix, where fix[0] is
the least significant bit.

a = 0b11001100101010

30.downto(0) do |n| print a[n] end

produces:

0000000000000000011001100101010

FLOAT 287

F
lo

at

id2name fix.id2name→ aString or nil

Returns the name of the object whose symbol id is the value of fix. If there is no sym-
bol in the symbol table with this value, returns nil. id2name has nothing to do with
the Object.id method. See also String#intern on page 340 and class Symbol on
page 351.

symbol = :@inst_var → :@inst_var

id = symbol.to_i → 9642

id.id2name → "@inst_var"

size fix.size→ aFixnum

Returns the number of bytes in the machine representation of a Fixnum.

to_f fix.to_f→ aFloat

Converts fix to a Float.

to_i fix.to_i→ fix

Returns fix.

to_s fix.to_s→ aString

Returns a string containing the decimal representation of self.

Class Float < Numeric

Float objects represent real numbers using the native architecture’s double-precision
floating point representation.

Instance methods
Arithmetic operations

Performs various arithmetic operations on flt.

flt + aNumeric Addition
flt – aNumeric Subtraction
flt * aNumeric Multiplication
flt / aNumeric Division
flt % aNumeric Modulo
flt ** aNumeric Exponentiation

<=> flt <=> aNumeric→−1, 0, +1

Returns −1, 0, or +1 depending on whether flt is less than, equal to, or greater than
aNumeric. This is the basis for the tests in Comparable.

ceil flt.ceil→ anInteger

Returns the smallest Integer greater than or equal to flt.

F
lo

at

288 CHAPTER 22. BUILT-IN CLASSES

1.2.ceil → 2

2.0.ceil → 2

(-1.2).ceil → -1

(-2.0).ceil → -2

finite? flt.finite?→ true or false

Returns true if flt is a valid IEEE floating point number (it is not infinite, and nan? is
false).

floor flt.floor→ anInteger

Returns the largest integer less than or equal to flt.

1.2.floor → 1

2.0.floor → 2

(-1.2).floor → -2

(-2.0).floor → -2

infinite? flt.infinite?→ nil,−1, +1

Returns nil,−1, or +1 depending on whether flt is finite, −∞, or +∞.

(0.0).infinite? → nil

(-1.0/0.0).infinite? → -1

(+1.0/0.0).infinite? → 1

nan? flt.nan?→ true or false

Returns true if flt is an invalid IEEE floating point number.

a = -1.0

a.nan?

a = Math.log(a)

a.nan?

round flt.round→ anInteger

Rounds flt to the nearest integer. Equivalent to:

def round

return floor(self+0.5) if self > 0.0

return ceil(self-0.5) if self < 0.0

return 0.0

end

1.5.round → 2

(-1.5).round → -2

to_f flt.to_f→ flt

Returns flt.

to_i flt.to_i→ anInteger

Returns flt truncated to an Integer.

HASH 289

H
as

h

to_s flt.to_s→ aString

Returns a string containing a representation of self. As well as a fixed or exponential
form of the number, the call may return “NaN”, “Infinity”, and “-Infinity”.

Class Hash < Object

A Hash is a collection of key-value pairs. It is similar to an Array, except that indexing
is done via arbitrary keys of any object type, not an integer index. The order in which
you traverse a hash by either key or value may seem arbitrary, and will generally not
be in the insertion order.

Hashes have a default value that is returned when accessing keys that do not exist in
the hash. By default, that value is nil.

Mixes in

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
[] Hash[〈 key => value 〉∗]→ aHash

Creates a new hash populated with the given objects. Equivalent to the literal { key,

value, ... }. Keys and values occur in pairs, so there must be an even number of
arguments.

Hash["a", 100, "b", 200] → {"a"=>100, "b"=>200}

Hash["a" => 100, "b" => 200] → {"a"=>100, "b"=>200}

{ "a" => 100, "b" => 200 } → {"a"=>100, "b"=>200}

new Hash.new(anObject=nil)→ aHash

Returns a new, empty hash. If anObject is specified, it will be used as the default value.

h = Hash.new("Go Fish")

h["a"] = 100

h["b"] = 200

h["a"] → 100

h["c"] → "Go Fish"

Instance methods
== hsh == anOtherHash→ true or false

Equality—Two hashes are equal if they each contain the same number of keys and if
each key-value pair is equal to (according to Object#==) the corresponding elements
in the other hash.

H
as

h

290 CHAPTER 22. BUILT-IN CLASSES

h1 = { "a" => 1, "c" => 2 }

h2 = { "a" => 1, "c" => 2, 7 => 35 }

h3 = { "a" => 1, "c" => 2, 7 => 35 }

h4 = { "a" => 1, "d" => 2, "f" => 35 }

h1 == h2 → false

h2 == h3 → true

h3 == h4 → false

[] hsh[aKeyObject]→ aValueObject

Element Reference—Retrieves the aValueObject stored for aKeyObject. If not found,
returns the default value.

h = { "a" => 100, "b" => 200 }

h["a"] → 100

h["c"] → nil

[]= hsh[aKeyObject] = aValueObject→ aValueObject

Element Assignment—Associates the value given by aValueObject with the key given
by aKeyObject. aKeyObject should not have its value changed while it is in use as a key
(a String passed as a key will be duplicated and frozen).

h = { "a" => 100, "b" => 200 }

h["a"] = 9

h["c"] = 4

h → {"a"=>9, "b"=>200, "c"=>4}

clear hsh.clear→ hsh

Removes all key-value pairs from hsh.

h = { "a" => 100, "b" => 200 } → {"a"=>100, "b"=>200}

h.clear → {}

default hsh.default→ anObject

Returns the “default value”—that is, the value returned for a key that does not exist in
the hash. Defaults to nil. See also Hash#default=.

default= hsh.default = anObject→ hsh

Sets the “default value”—that is, the value returned for a key that does not exist in the
hash. Defaults to nil.

h = { "a" => 100, "b" => 200 }

h.default = "Go fish"

h["a"] → 100

h["z"] → "Go fish"

delete hsh.delete(aKeyObject)→ aValueObject
hsh.delete(aKeyObject) {| aKeyObject | block } → aValueObject

Deletes and returns a key-value pair from hsh whose key is equal to aKeyObject. If the
key is not found, returns the default value. If the optional code block is given and the
key is not found, pass in the key and return the result of block.

HASH 291

H
as

h

h = { "a" => 100, "b" => 200 }

h.delete("a") → 100

h.delete("z") → nil

h.delete("z") { |el| "#{el} not found" } → "z not found"

delete_if hsh.delete_if {| key, value | block } → hsh

Deletes every key-value pair from hsh for which block evaluates to true.

h = { "a" => 100, "b" => 200, "c" => 300 }

h.delete_if {|key, value| key >= "b" } → {"a"=>100}

each hsh.each {| key, value | block } → hsh

Calls block once for each key in hsh, passing the key and value as parameters.

h = { "a" => 100, "b" => 200 }

h.each {|key, value| print key, " is ", value, "\n" }

produces:
a is 100

b is 200

each_key hsh.each_key {| key | block } → hsh

Calls block once for each key in hsh, passing the key as a parameter.

h = { "a" => 100, "b" => 200 }

h.each_key {|key| puts key }

produces:
a

b

each_pair hsh.each_pair {| key, value | block } → hsh

Synonym for Hash#each.

each_value hsh.each_value {| value | block } → hsh

Calls block once for each key in hsh, passing the value as a parameter.

h = { "a" => 100, "b" => 200 }

h.each_value {|value| puts value }

produces:
100

200

empty? hsh.empty?→ true or false

Returns true if hsh contains no key-value pairs.

{}.empty? → true

fetch hsh.fetch(aKeyObject 〈 , aDefObject 〉)→ anObject
hsh.fetch(aKeyObject) {| aKeyObject | block } → anObject

Returns a value from the hash for the given key. If the key can’t be found, there are
several options: With no other arguments, it will raise an IndexError exception; if

H
as

h

292 CHAPTER 22. BUILT-IN CLASSES

aDefObject is given, then that will be returned; if the optional code block is specified,
then that will be run and its result returned.

h = { "a" => 100, "b" => 200 }

h.fetch("a") → 100

h.fetch("z", "go fish") → "go fish"

h.fetch("z") { |el| "go fish, #{el}"} → "go fish, z"

The following example shows that an exception is raised if the key is not found and a
default value is not supplied.

h = { "a" => 100, "b" => 200 }

h.fetch("z")

produces:

prog.rb:2:in `fetch’: key not found (IndexError)

from prog.rb:2

has_key? hsh.has_key?(aKeyObject)→ true or false

Returns true if the given key is present in hsh.

h = { "a" => 100, "b" => 200 }

h.has_key?("a") → true

h.has_key?("z") → false

has_value? hsh.has_value?(aValueObject)→ true or false

Returns true if the given value is present for some key in hsh.

h = { "a" => 100, "b" => 200 }

h.has_value?(100) → true

h.has_value?(999) → false

include? hsh.include?(aKeyObject)→ true or false

Synonym for Hash#has_key?.

index hsh.index(aValueObject)→ aKeyObject

Returns the key for a given value. If not found, returns the default value.

h = { "a" => 100, "b" => 200 }

h.index(200) → "b"

h.index(999) → nil

indexes hsh.indexes(〈 key 〉+)→ anArray

Returns a new array consisting of values for the given key(s). Will insert the default
value for keys that are not found.

HASH 293

H
as

h

h = { "a" => 100, "b" => 200, "c" => 300 } → -:2: warning:

Hash#indexes is

deprecated; use

Hash#select

h.indexes("a", "c") → [100, 300]\n-:3:

warning:

Hash#indexes is

deprecated; use

Hash#select

h.indexes("a", "c", "z") → [100, 300, nil]

indices hsh.indices(〈 key 〉+)→ anArray

Synonym for Hash#indexes.

invert hsh.invert→ aHash

Returns a new hash created by using hsh’s values as keys, and the keys as values.

h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 }

h.invert → {0=>"a", 100=>"n", 200=>"d", 300=>"y"}

key? hsh.key?(aKeyObject)→ true or false

Synonym for Hash#has_key?.

keys hsh.keys→ anArray

Returns a new array populated with the keys from this hash. See also Hash#values.

h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 }

h.keys → ["a", "b", "c", "d"]

length hsh.length→ aFixnum

Returns the number of key-value pairs in the hash.

h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 }

h.length → 4

h.delete("a") → 200

h.length → 3

member? hsh.member?(aKeyObject)→ true or false

Synonym for Hash#has_key?.

rehash hsh.rehash→ hsh

Rebuilds the hash based on the current hash values for each key. If values of key objects
have changed since they were inserted, this method will reindex hsh. If Hash#rehash
is called while an iterator is traversing the hash, an IndexError will be raised in the
iterator.

H
as

h

294 CHAPTER 22. BUILT-IN CLASSES

a = ["a", "b"]

c = ["c", "d"]

h = { a => 100, c => 300 }

h[a] → 100

a[0] = "z"

h[a] → nil

h.rehash → {["z", "b"]=>100, ["c", "d"]=>300}

h[a] → 100

reject hsh.reject {| key, value | block } → aHash

Same as Hash#delete_if, but works on (and returns) a copy of the hsh. Equivalent to
hsh.dup.delete_if.

reject! hsh.reject! {| key, value | block } → hsh or nil

Equivalent to Hash#delete_if, but returns nil if no changes were made.

replace hsh.replace(anOtherHash)→ hsh

Replaces the contents of hsh with the contents of anOtherHash.

h = { "a" => 100, "b" => 200 }

h.replace({ "c" => 300, "d" => 400 }) → {"c"=>300, "d"=>400}

shift hsh.shift→ anArray or nil

Removes a key-value pair from hsh and returns it as the two-item array [key, value],
or nil if the hash is empty.

h = { 1 => "a", 2 => "b", 3 => "c" }

h.shift → [1, "a"]

h → {2=>"b", 3=>"c"}

size hsh.size→ aFixnum

Synonym for Hash#length.

sort hsh.sort→ anArray
hsh.sort {| a, b | block } → anArray

Converts hsh to a nested array of [key, value] arrays and sorts it, using Array#sort.

h = { "a" => 20, "b" => 30, "c" => 10 }

h.sort → [["a", 20], ["b", 30], ["c", 10]]

h.sort {|a,b| a[1]<=>b[1]} → [["c", 10], ["a", 20], ["b", 30]]

store hsh.store(aKeyObject, aValueObject)→ aValueObject

Synonym for Element Assignment (Hash#[]=).

to_a hsh.to_a→ anArray

Converts hsh to a nested array of [key, value] arrays.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }

h.to_a → [["a", 100], ["c", 300], ["d", 400]]

INTEGER 295

I
nt

eg
er

to_s hsh.to_s→ aString

Converts hsh to a string by converting the hash to an array of [key, value] pairs and
then converting that array to a string using Array#join with the default separator.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }

h.to_s → "a100c300d400"

update hsh.update(anOtherHash)→ hsh

Adds the contents of anOtherHash to hsh, overwriting entries with duplicate keys with
those from anOtherHash.

h1 = { "a" => 100, "b" => 200 }

h2 = { "b" => 254, "c" => 300 }

h1.update(h2) → {"a"=>100, "b"=>254, "c"=>300}

value? hsh.value?(aValueObject)→ true or false

Synonym for Hash#has_value?.

values hsh.values→ anArray

Returns a new array populated with the values from hsh. See also Hash#keys.

h = { "a" => 100, "b" => 200, "c" => 300 }

h.values → [100, 200, 300]

Class Integer < Numeric

Subclasses: Bignum, Fixnum

Integer is the basis for the two concrete classes that hold whole numbers, Bignum
and Fixnum.

Instance methods
chr int.chr→ aString

Returns a string containing the ASCII character represented by the receiver’s value.

65.chr → "A"

?a.chr → "a"

230.chr → "\346"

downto int.downto(anInteger) {| i | block } → int

Iterates block, passing decreasing values from int down to and including anInteger.

5.downto(1) { |n| print n, ".. " }

print " Liftoff!\n"

produces:

5.. 4.. 3.. 2.. 1.. Liftoff!

I
nt

eg
er

296 CHAPTER 22. BUILT-IN CLASSES

integer? int.integer?→ true

Always returns true.

next int.next→ anInteger

Returns the Integer equal to int + 1.

1.next → 2

(-1).next → 0

step int.step(endNum, step) {| i | block } → int

Invokes block with the sequence of numbers starting at int, incremented by step on each
call. The loop finishes when the value to be passed to the block is greater than endNum
(if step is positive) or less than endNum (if step is negative).

1.step(10, 2) { |i| print i, " " }

produces:
1 3 5 7 9

succ int.succ→ anInteger

Synonym for Integer#next.

times int.times {| i | block } → int

Iterates block int times, passing in values from zero to int −1.

5.times do |i|

print i, " "

end

print "\n"

produces:
0 1 2 3 4

upto int.upto(anInteger) {| i | block } → int

Iterates block, passing in integer values from int up to and including anInteger.

5.upto(10) { |i| print i, " " }

produces:
5 6 7 8 9 10

IO 297

I
O

Class IO < Object

Subclasses: File

Class IO is the basis for all input and output in Ruby. An I/O stream may be duplexed
(that is, bidirectional), and so may use more than one native operating system stream.

Many of the examples in this section use class File, the only standard subclass of IO.
The two classes are closely associated.

As used in this section, aPortname may take any of the following forms.

• A plain string represents a filename suitable for the underlying operating system.

• A string starting with “|” indicates a subprocess. The remainder of the string
following the “|” is invoked as a process with appropriate input/output channels
connected to it.

• A string equal to “|-” will create another Ruby instance as a subprocess.

Ruby will convert pathnames between different operating system conventions if possi-
ble. For instance, on a Windows system the filename “/gumby/ruby/test.rb” will
be opened as “\gumby\ruby\test.rb”. When specifying a Windows-style filename
in a Ruby string, remember to escape the backslashes:

"c:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::SEPARATOR can be
used to get the platform-specific separator character.

I/O ports may be opened in any one of several different modes, which are shown in
this section as aModeString. This mode string must be one of the values listed in
Table 22.5 on the next page.

Mixes in

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
foreach IO.foreach(aPortName, aSepString=$/) {| line | block } → nil

Executes the block for every line in the named I/O port, where lines are separated by
aSepString.

IO.foreach("testfile") {|x| print "GOT ", x }

produces:

GOT This is line one

GOT This is line two

GOT This is line three

GOT And so on...

I
O

298 CHAPTER 22. BUILT-IN CLASSES

Table 22.5. Mode strings

Mode Meaning

“r” Read-only, starts at beginning of file (default mode).
“r+” Read-write, starts at beginning of file.
“w” Write-only, truncates existing file to zero length or creates a new file for writ-

ing.
“w+” Read-write, truncates existing file to zero length or creates a new file for read-

ing and writing.
“a” Write-only, starts at end of file if file exists, otherwise creates a new file for

writing.
“a+” Read-write, starts at end of file if file exists, otherwise creates a new file for

reading and writing.
“b” (DOS/Windows only) Binary file mode (may appear with any of the key letters

listed above).

new IO.new(anInteger, aModeString)→ aFile

Returns a new File object (a stream) for the given integer file descriptor and mode
string. See also IO#fileno.

a = IO.new(2,"w") # ’2’ is standard error

$stderr.puts "Hello"

a.puts "World"

produces:

Hello

World

pipe IO.pipe→ anArray

Creates a pair of pipe endpoints (connected to each other) and returns them as a two-
element array of IO objects: [readFile, writeFile]. Not available on all platforms.

In the example below, the two processes close the ends of the pipe that they are not
using. This is not just a cosmetic nicety. The read end of a pipe will not generate an
end of file condition if there are any writers with the pipe still open. In the case of the
parent process, the rd.read will never return if it does not first issue a wr.close.

rd, wr = IO.pipe

if fork

wr.close

puts "Parent got: <#{rd.read}>"

rd.close

Process.wait

else

rd.close

puts "Sending message to parent"

wr.write "Hi Dad"

wr.close

end

produces:

IO 299

I
O

Sending message to parent

Parent got: <Hi Dad>

popen IO.popen(aCmdString, aModeString="r")→ anIO
IO.popen(aCmdString, aModeString="r") {| anIO | block } → nil

Runs the specified command string as a subprocess; the subprocess’s standard input
and output will be connected to the returned IO object. If aCmdString starts with a “-”,
then a new instance of Ruby is started as the subprocess. The default mode for the new
file object is “r”, but aModeString may be set to any of the modes in Table 22.5 on the
facing page.

If a block is given, Ruby will run the command as a child connected to Ruby with a
pipe. Ruby’s end of the pipe will be passed as a parameter to the block.

If a block is given with a aCmdString of “-”, the block will be run in two separate
processes: once in the parent, and once in a child. The parent process will be passed the
pipe object as a parameter to the block, the child version of the block will be passed
nil, and the child’s standard in and standard out will be connected to the parent through
the pipe. Not available on all platforms.

f = IO.popen("uname")

p f.readlines

puts "Parent is #{Process.pid}"

IO.popen ("date") { |f| puts f.gets }

IO.popen("-") {|f| $stderr.puts "#{Process.pid} is here, f is #{f}"}

produces:
["Linux\n"]

Parent is 27760

Thu Dec 26 20:05:09 MSK 2002

27760 is here, f is #<IO:0x394fec>

27764 is here, f is

readlines IO.readlines(aPortName, aSepString=$/)→ anArray

Reads the entire file specified by aPortName as individual lines, and returns those lines
in an array. Lines are separated by aSepString.

a = IO.readlines("testfile")

a[0] → "This is line one\n"

select IO.select(readArray 〈 , writeArray 〈 , errorArray 〈 , timeout 〉 〉 〉)→ anArray
or nil

See Kernel#select on page 385.

Instance methods
<< ios << anObject→ ios

String Output—Writes anObject to ios. anObject will be converted to a string using
to_s.

$stdout << "Hello " << "world!\n"

produces:

I
O

300 CHAPTER 22. BUILT-IN CLASSES

Hello world!

binmode ios.binmode→ ios

Puts ios into binary mode. This is useful only in MS-DOS/Windows environments.
Once a stream is in binary mode, it cannot be reset to nonbinary mode.

clone ios.clone→ anIO

Creates a new I/O stream, copying all the attributes of ios. The file position is shared
as well, so reading from the clone will alter the file position of the original, and vice-
versa.

close ios.close→ nil

Closes ios and flushes any pending writes to the operating system. The stream is
unavailable for any further data operations; an IOError is raised if such an attempt
is made. I/O streams are automatically closed when they are claimed by the garbage
collector.

close_read ios.close_read→ nil

Closes the read end of a duplex I/O stream (i.e., one that contains both a read and a
write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")

f.close_read

f.readlines

produces:
prog.rb:3:in `readlines’: not opened for reading (IOError)

from prog.rb:3

close_write ios.close_write→ nil

Closes the write end of a duplex I/O stream (i.e., one that contains both a read and a
write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")

f.close_write

f.print "nowhere"

produces:
prog.rb:3:in `write’: not opened for writing (IOError)

from prog.rb:3:in `print’

from prog.rb:3

closed? ios.closed?→ true or false

Returns true if ios is completely closed (for duplex streams, both reader and writer),
false otherwise.
f = File.new("testfile")

f.close → nil

f.closed? → true

f = IO.popen("/bin/sh","r+")

f.close_write → nil

f.closed? → false

f.close_read → nil

f.closed? → true

IO 301

I
O

each ios.each(aSepString=$/) {| line | block } → ios

Executes the block for every line in ios, where lines are separated by aSepString. ios
must be opened for reading or an IOerror will be raised.

f = File.new("testfile")

f.each {|line| puts "#{f.lineno}: #{line}" }

produces:
1: This is line one

2: This is line two

3: This is line three

4: And so on...

each_byte ios.each_byte {| byte | block } → nil

Calls the given block once for each byte (0..255) in ios, passing the byte as an argument.
The stream must be opened for reading or an IOerror will be raised.

f = File.new("testfile")

checksum = 0

f.each_byte {|x| checksum ^= x } → #<File:testfile>

checksum → 12

each_line ios.each_line(aSepString=$/) {| line | block } → ios

Synonym for IO#each.

eof ios.eof→ true or false

Returns true if ios is at end of file. The stream must be opened for reading or an
IOError will be raised.
f = File.new("testfile")

dummy = f.readlines

f.eof → true

eof? ios.eof?→ true or false

Synonym for IO#eof.

fcntl ios.fcntl(anIntegerCmd, anArg)→ anInteger

Provides a mechanism for issuing low-level commands to control or query file-oriented
I/O streams. Arguments and results are platform dependent. If anArg is a number, its
value is passed directly. If it is a string, it is interpreted as a binary sequence of bytes.
On Unix platforms, see fcntl(2) for details. Not implemented on all platforms.

fileno ios.fileno→ aFixnum

Returns an integer representing the numeric file descriptor for ios.

$stdin.fileno → 0

$stdout.fileno → 1

flush ios.flush→ ios

Flushes any buffered data within ios to the underlying operating system (note that this
is Ruby internal buffering only; the OS may buffer the data as well).

I
O

302 CHAPTER 22. BUILT-IN CLASSES

$stdout.print "no newline"

$stdout.flush

produces:
no newline

getc ios.getc→ aFixnum or nil

Gets the next 8-bit byte (0..255) from ios. Returns nil if called at end of file.

f = File.new("testfile")

f.getc → 84

f.getc → 104

gets ios.gets(aSepString=$/)→ aString or nil

Reads the next “line” from the I/O stream; lines are separated by aSepString. A sep-
arator of nil reads the entire contents, and a zero-length separator reads the input a
paragraph at a time (two successive newlines in the input separate paragraphs). The
stream must be opened for reading or an IOerror will be raised. The line read in will
be returned and also assigned to $_. Returns nil if called at end of file.

File.new("testfile").gets → "This is line one\n"

$_ → "This is line one\n"

ioctl ios.ioctl(anIntegerCmd, anArg)→ anInteger

Provides a mechanism for issuing low-level commands to control or query I/O devices.
Arguments and results are platform dependent. If anArg is a number, its value is passed
directly. If it is a string, it is interpreted as a binary sequence of bytes. On Unix plat-
forms, see ioctl(2) for details. Not implemented on all platforms.

isatty ios.isatty→ true or false

Returns true if ios is associated with a terminal device (tty), false otherwise.

File.new("testfile").isatty → false

File.new("/dev/tty").isatty → true

lineno ios.lineno→ anInteger

Returns the current line number in ios. The stream must be opened for reading. lineno
counts the number of times gets is called, rather than the number of newlines encoun-
tered. The two values will differ if gets is called with a separator other than newline.
See also the $. variable.

f = File.new("testfile")

f.lineno → 0

f.gets → "This is line one\n"

f.lineno → 1

f.gets → "This is line two\n"

f.lineno → 2

lineno= ios.lineno = anInteger→ anInteger

Manually sets the current line number to the given value. $. is updated only on the next
read.

IO 303

I
O

f = File.new("testfile")

f.gets → "This is line one\n"

$. → 1

f.lineno = 1000

f.lineno → 1000

$. # lineno of last read → 1

f.gets → "This is line two\n"

$. # lineno of last read → 1001

pid ios.pid→ aFixnum

Returns the process ID of a child process associated with ios. This will be set by
IO.popen.

pipe = IO.popen("-")

if pipe

$stderr.puts "In parent, child pid is #{pipe.pid}"

else

$stderr.puts "In child, pid is #{$$}"

end

produces:
In parent, child pid is 27800In child, pid is 27800

pos ios.pos→ anInteger

Returns the current offset (in bytes) of ios.

f = File.new("testfile")

f.pos → 0

f.gets → "This is line one\n"

f.pos → 17

pos= ios.pos = anInteger→ 0

Seeks to the given position (in bytes) in ios.

f = File.new("testfile")

f.pos = 17

f.gets → "This is line two\n"

print ios.print(〈 anObject=$_ 〉∗)→ nil

Writes the given object(s) to ios. The stream must be opened for writing. If the output
record separator ($\) is not nil, it will be appended to the output. If no arguments
are given, prints $_. Objects that aren’t strings will be converted by calling their to_s
method. Returns nil.

$stdout.print("This is ", 100, " percent.\n")

produces:
This is 100 percent.

printf ios.printf(aFormatString 〈 , anObject 〉∗)→ nil

Formats and writes to ios, converting parameters under control of the format string. See
Kernel#sprintf on page 387 for details.

I
O

304 CHAPTER 22. BUILT-IN CLASSES

putc ios.putc(anObject)→ anObject

Writes the given character (taken from a String or a Fixnum) on ios.

$stdout.putc "A"

$stdout.putc 65

produces:

AA

puts ios.puts(〈 anObject 〉∗)→ nil

Writes the given objects to ios as with IO#print. Writes a record separator (typically
a newline) after any that do not already end with a newline sequence. If called with an
array argument, writes each element on a new line. If called without arguments, outputs
a single record separator.

$stdout.puts("this", "is", "a", "test")

produces:

this

is

a

test

read ios.read(〈 anInteger 〉)→ aString or nil

Reads at most anInteger bytes from the I/O stream, or to the end of file if anInteger is
omitted. Returns nil if called at end of file.

f = File.new("testfile")

f.read(16) → "This is line one"

readchar ios.readchar→ aFixnum

Reads a character as with IO#getc, but raises an EOFError on end of file.

readline ios.readline(aSepString=$/)→ aString

Reads a line as with IO#gets, but raises an EOFError on end of file.

readlines ios.readlines(aSepString=$/)→ anArray

Reads all of the lines in ios, and returns them in anArray. Lines are separated by the
optional aSepString. The stream must be opened for reading or an IOerror will be
raised.

f = File.new("testfile")

f.readlines[0] → "This is line one\n"

reopen ios.reopen(anOtherIO)→ ios
ios.reopen(aPath, aModeStr)→ ios

Reassociates ios with the I/O stream given in anOtherIO or to a new stream opened on
aPath. This may dynamically change the actual class of this stream.

IO 305

I
O

f1 = File.new("testfile")

f2 = File.new("testfile")

f2.readlines[0] → "This is line one\n"

f2.reopen(f1) → #<File:testfile>

f2.readlines[0] → "This is line one\n"

rewind ios.rewind→ 0

Positions ios to the beginning of input, resetting lineno to zero.

f = File.new("testfile")

f.readline → "This is line one\n"

f.rewind → 0

f.lineno → 0

f.readline → "This is line one\n"

seek ios.seek(anInteger, whence=SEEK_SET)→ 0

Seeks to a given offset anInteger in the stream according to the value of whence:

IO::SEEK_CUR Seeks to anInteger plus current position.
IO::SEEK_END Seeks to anInteger plus end of stream (you probably want a negative

value for anInteger).
IO::SEEK_SET Seeks to the absolute location given by anInteger.

f = File.new("testfile")

f.seek(-13, IO::SEEK_END) → 0

f.readline → "And so on...\n"

stat ios.stat→ aStat

Returns status information for ios as an object of type File::Stat.

f = File.new("testfile")

s = f.stat

"%o" % s.mode → "100644"

s.blksize → 4096

s.atime → Thu Dec 26 20:05:10 MSK 2002

sync ios.sync→ true or false

Returns the current “sync mode” of ios. When sync mode is true, all output is immedi-
ately flushed to the underlying operating system and is not buffered by Ruby internally.

f = File.new("testfile")

f.sync → false

sync= ios.sync = aBoolean→ aBoolean

Sets the “sync mode” to true or false. When sync mode is true, all output is immedi-
ately flushed to the underlying operating system and is not buffered internally. Returns
the new state.

f = File.new("testfile")

f.sync = true

I
O

306 CHAPTER 22. BUILT-IN CLASSES

sysread ios.sysread(anInteger)→ aString

Reads anInteger bytes from ios using a low-level read and returns them as a string. Do
not mix with other methods that read from ios or you may get unpredictable results.
Raises SystemCallError on error and EOFError at end of file.

f = File.new("testfile")

f.sysread(16) → "This is line one"

syswrite ios.syswrite(aString)→ anInteger

Writes the given string to ios using a low-level write. Returns the number of bytes
written. Do not mix with other methods that write to ios or you may get unpredictable
results. Raises SystemCallError on error.

f = File.new("out", "w")

f.syswrite("ABCDEF") → 6

tell ios.tell→ anInteger

Synonym for IO#pos.

to_i ios.to_i→ anInteger

Synonym for IO#fileno.

to_io ios.to_io→ ios

Returns ios.

tty? ios.tty?→ true or false

Synonym for IO#isatty.

ungetc ios.ungetc(anInteger)→ nil

Pushes back one character onto ios, such that a subsequent buffered read will return
it. Only one character may be pushed back before a subsequent read operation (that is,
you will be able to read only the last of several characters that have been pushed back).
Has no effect with unbuffered reads (such as IO#sysread).

f = File.new("testfile") → #<File:testfile>

c = f.getc → 84

f.ungetc(c) → nil

f.getc → 84

write ios.write(aString)→ anInteger

Writes the given string to ios. The stream must be opened for writing. If the argument
is not a string, it will be converted to a string using to_s. Returns the number of bytes
written.

count = $stdout.write("This is a test\n")

puts "That was #{count} bytes of data"

produces:
This is a test

That was 15 bytes of data

MATCHDATA 307

M
at

ch
D

at
a

Class MatchData < Object

MatchData is the type of the special variable $~, and is the type of the object returned
by Regexp#match and Regexp#last_match. It encapsulates all the results of a pattern
match, results normally accessed through the special variables $&, $’, $‘, $1, $2, and
so on.

Instance methods
[] mtch[i]→ anObject

mtch[start, length]→ anArray
mtch[aRange]→ anArray

Match Reference—MatchData acts as an array, and may be accessed using the normal
array indexing techniques. mtch[0] is equivalent to the special variable $&, and returns
the entire matched string. mtch[1], mtch[2], and so on return the values of the matched
backreferences (portions of the pattern between parentheses).

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m[0] → "HX1138"

m[1, 2] → ["H", "X"]

m[1..3] → ["H", "X", "113"]

m[-3, 2] → ["X", "113"]

begin mtch.begin(n)→ anInteger

Returns the offset of the start of the nth element of the match array in the string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.begin(0) → 1

m.begin(2) → 2

end mtch.end(n)→ anInteger

Returns the offset of the character immediately following the end of the nth element of
the match array in the string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.end(0) → 7

m.end(2) → 3

length mtch.length→ anInteger

Returns the number of elements in the match array.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.length → 5

m.size → 5

offset mtch.offset(n)→ anArray

Returns a two-element array containing the beginning and ending offsets of the nth
match.
m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.offset(0) → [1, 7]

m.offset(4) → [6, 7]

M
at

ch
D

at
a

308 CHAPTER 22. BUILT-IN CLASSES

post_match mtch.post_match→ aString

Returns the portion of the original string after the current match. Equivalent to the
special variable $’.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")

m.post_match → ": The Movie"

pre_match mtch.pre_match→ aString

Returns the portion of the original string before the current match. Equivalent to the
special variable $‘.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.pre_match → "T"

size mtch.size→ anInteger

A synonym for MatchData#length.

string mtch.string→ aString

Returns a frozen copy of the string passed in to match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.string → "THX1138."

to_a mtch.to_a→ anArray

Returns the array of matches.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.to_a → ["HX1138", "H", "X", "113", "8"]

to_s mtch.to_s→ aString

Returns the entire matched string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.to_s → "HX1138"

METHOD 309

M
et

ho
d

Class Method < Object

Method objects are created by Object#method, and are associated with a particular
object (not just with a class). They may be used to invoke the method within the object,
and as a block associated with an iterator.
class Thing

def square(n)

n*n

end

end

aThing = Thing.new

aMethod = aThing.method("square")

aMethod.call(9) → 81

[1, 2, 3].collect(&aMethod) → [1, 4, 9]

Instance methods
[] meth[〈 args 〉∗]→ anObject

Synonym for Method.call.

arity meth.arity→ aFixnum

Returns an indication of the number of arguments accepted by a method. Returns a non-
negative integer for methods that take a fixed number of arguments. For Ruby methods
that take a variable number of arguments, returns −n − 1, where n is the number of
required arguments. For methods written in C, returns −1 if the call takes a variable
number of arguments.

call meth.call(〈 args 〉∗)→ anObject

Invokes the meth with the specified arguments, returning the method’s return value.

m = 12.method("+")

m.call(3) → 15

m.call(20) → 32

to_proc meth.to_proc→ aProc

Returns a Proc object corresponding to this method.

M
od

ul
e

310 CHAPTER 22. BUILT-IN CLASSES

Class Module < Object

Subclasses: Class

A Module is a collection of methods and constants. The methods in a module may be
instance methods or module methods. Instance methods appear as methods in a class
when the module is included, module methods do not. Conversely, module methods
may be called without creating an encapsulating object, while instance methods may
not. See Module#module_function on page 316.

In the descriptions that follow, the parameter aSymbol refers to a symbol, which is
either a quoted string or a Symbol (such as :name).

module Mod

include Math

CONST = 1

def meth

...

end

end

Mod.class → Module

Mod.constants → ["E", "PI", "CONST"]

Mod.instance_methods → ["meth"]

Class methods
constants Module.constants→ anArray

Returns an array of the names of all constants defined in the system. This list includes
the names of all modules and classes.

p Module.constants.sort[1..5]

produces:
["ARGV", "ArgumentError", "Array", "Bignum", "Binding"]

nesting Module.nesting→ anArray

Returns the list of Modules nested at the point of call.

module M1

module M2

$a = Module.nesting

end

end

$a → [M1::M2, M1]

$a[0].name → "M1::M2"

new Module.new→ aModule

Creates a new anonymous module.

MODULE 311

M
od

ul
e

Instance methods
<, <=, >, >= mod relop aModule→ true or false

Hierarchy Query—One module is considered greater than another if it is included in
(or is a parent class of) the other module. The other operators are defined accordingly.
If there is no relationship between the modules, returns false for all operators.

module Mixin

end

module Parent

include Mixin

end

module Unrelated

end

Parent > Mixin → false

Parent < Mixin → true

Parent <= Parent → true

Parent < Unrelated → false

Parent > Unrelated → false

<=> mod <=> aModule→−1, 0, +1

Comparison—Returns−1 if mod includes aModule, 0 if mod is the same as aModule,
and +1 if mod is included by aModule or if mod has no relationship with aModule.

=== mod === anObject→ true or false

Case Equality—Returnstrue if anObject is an instance of mod or one of mod’s descen-
dents. Of limited use for modules, but can be used in case statements to classify objects
by class.

ancestors mod.ancestors→ anArray

Returns a list of modules included in mod (including mod itself).

module Mod

include Math

include Comparable

end

Mod.ancestors → [Mod, Comparable, Math]

Math.ancestors → [Math]

class_eval mod.class_eval(aString)→ anObject
mod.class_eval { block } → anObject

Synonym for Module.module_eval.

class_variables mod.class_variables→ anArray

Returns an array of the names of class variables in mod and the ancestors of mod.

M
od

ul
e

312 CHAPTER 22. BUILT-IN CLASSES

class One

@@var1 = 1

end

class Two < One

@@var2 = 2

end

One.class_variables → ["@@var1"]

Two.class_variables → ["@@var2", "@@var1"]

clone mod.clone→ aModule

Creates a new copy of a module.

m = Math.clone → #<Module:0x3952d0>

m.constants → ["E", "PI"]

m == Math → false

const_defined? mod.const_defined?(aSymbol)→ true or false

Returns true if a constant with the given name is defined by mod.

Math.const_defined? "PI" → true

const_get mod.const_get(aSymbol)→ anObject

Returns the value of the named constant in mod.

Math.const_get :PI → 3.141592653589793

const_set mod.const_set(aSymbol, anObject)→ anObject

Sets the named constant to the given object, returning that object. Creates a new con-
stant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) → 3.142857142857143

Math::HIGH_SCHOOL_PI - Math::PI → 0.001264489267349678

constants mod.constants→ anArray

Returns an array of the names of the constants accessible in mod. This includes the
names of constants in any included modules (example at start of section).

included_modules mod.included_modules→ anArray

Returns the list of modules included in mod.
module Mixin

end

module Outer

include Mixin

end

Mixin.included_modules → []

Outer.included_modules → [Mixin]

instance_methods mod.instance_methods(includeSuper=false)→ anArray

Returns an array containing the names of public instance methods in the receiver. For a
module, these are the public methods; for a class, they are the instance (not singleton)

MODULE 313

M
od

ul
e

methods. With no argument, or with an argument that is false, the instance methods in
mod are returned, otherwise the methods in mod and mod’s superclasses are returned.

module A

def method1() end

end

class B

def method2() end

end

class C < B

def method3() end

end

A.instance_methods → ["method1"]

B.instance_methods → ["method2"]

C.instance_methods → ["method3"]

C.instance_methods(true).length → 41

method_defined? mod.method_defined?(aSymbol)→ true or false

Returns true if the named method is defined by mod (or its included modules and, if
mod is a class, its ancestors).

module A

def method1() end

end

class B

def method2() end

end

class C < B

include A

def method3() end

end

A.method_defined? :method1 → true

C.method_defined? "method1" → true

C.method_defined? "method2" → true

C.method_defined? "method3" → true

C.method_defined? "method4" → false

module_eval mod.module_eval(aString)→ anObject
mod.module_eval { block } → anObject

Evaluates the string or block in the context of mod. This can be used to add methods to
a class. module_eval returns the result of evaluating its argument.

class Thing

end

a = %q{def hello() "Hello there!" end}

Thing.module_eval(a) → nil

Thing.new.hello() → "Hello there!"

name mod.name→ aString

Returns the name of the module mod.

private_class_method mod.private_class_method(〈 aSymbol 〉+)→ nil

Makes existing class methods private. Often used to hide the default constructor new.

M
od

ul
e

314 CHAPTER 22. BUILT-IN CLASSES

class SimpleSingleton # Not thread safe

private_class_method :new

def SimpleSingleton.create(*args, &block)

@me = new(*args, &block) if ! @me

@me

end

end

private_instance_methods
mod.private_instance_methods(includeSuper=false)→ anArray

Returns a list of the private instance methods defined in mod. If the optional parameter
is not false, the methods of any ancestors are included.

module Mod

def method1() end

private :method1

def method2() end

end

Mod.instance_methods → ["method2"]

Mod.private_instance_methods → ["method1"]

protected_instance_methods
mod.protected_instance_methods(includeSuper=false)→ anArray

Returns a list of the protected instance methods defined in mod. If the optional param-
eter is not false, the methods of any ancestors are included.

public_class_method mod.public_class_method(〈 aSymbol 〉+)→ nil

Makes a list of existing class methods public.

public_instance_methods
mod.public_instance_methods(includeSuper=false)→ anArray

Returns a list of the public instance methods defined in mod. If the optional parameter
is not false, the methods of any ancestors are included.

The following methods are used mainly during the definition of classes and modules.

Private instance methods
alias_method alias_method(newID, oldID)→ mod

Makes newID a new copy of the method oldID. This can be used to retain access to
methods that are overridden.

module Mod

alias_method :origExit, :exit

def exit(code=0)

print "Exiting with code #{code}\n"

origExit(code)

end

end

include Mod

exit(99)

produces:

MODULE 315

M
od

ul
e

Exiting with code 99

append_features append_features(aModule)→ mod

When this module is included in another, Ruby calls append_features in this mod-
ule, passing it the receiving module in aModule. Ruby’s default implementation is
to add the constants, methods, and module variables of this module to aModule if
this module has not already been added to aModule or one of its ancestors. See also
Module#include on the following page.

attr attr(aSymbol, writable=false)→ nil

Defines a named attribute for this module, where the name is aSymbol.id2name, cre-
ating an instance variable (@name) and a corresponding access method to read it. If
the optional writable argument is true, also creates a method called name= to set the
attribute.

module Mod

attr :size, true

end

is equivalent to:

module Mod

def size

@size

end

def size=(val)

@size = val

end

end

attr_accessor attr_accessor(〈 aSymbol 〉+)→ nil

Equivalent to calling “attr aSymbol, true” on each aSymbol in turn.

module Mod

attr_accessor(:one, :two)

end

Mod.instance_methods.sort → ["one", "one=", "two", "two="]

attr_reader attr_reader(〈 aSymbol 〉+)→ nil

Creates instance variables and corresponding methods that return the value of each
instance variable. Equivalent to calling “attr :name” on each name in turn.

attr_writer attr_writer(〈 aSymbol 〉+)→ nil

Creates an accessor method to allow assignment to the attribute aSymbol.id2name.

extend_object extend_object(anObject)→ anObject

Extends the specified object by adding this module’s constants and methods (which are
added as singleton methods). This is the callback method used by Object#extend.

module Picky

def Picky.extend_object(o)

M
od

ul
e

316 CHAPTER 22. BUILT-IN CLASSES

if String === o

print "Can’t add Picky to a String\n"

else

print "Picky added to ", o.class, "\n"

super

end

end

end

(s = Array.new).extend Picky # Call Object.extend

(s = "quick brown fox").extend Picky

produces:

Picky added to Array

Can’t add Picky to a String

include include(〈 aModule 〉+)→ mod

Invokes Module.append_features (documented on the page before) on each param-
eter in turn.

method_added method_added(aSymbol)

Invoked as a callback whenever a method is added to the receiver.

module Chatty

def Chatty.method_added(id)

print "Adding ", id.id2name, "\n"

end

def one() end

end

module Chatty

def two() end

end

produces:

Adding one

Adding two

module_function module_function(〈 aSymbol 〉∗)→ mod

Creates module functions for the named methods. These functions may be called with
the module as a receiver, and also become available as instance methods to classes
that mix in the module. Module functions are copies of the original, and so may be
changed independently. The instance-method versions are made private. If used with
no arguments, subsequently defined methods become module functions.

MODULE 317

M
od

ul
e

module Mod

def one

"This is one"

end

module_function :one

end

class Cls

include Mod

def callOne

one

end

end

Mod.one → "This is one"

c = Cls.new

c.callOne → "This is one"

module Mod

def one

"This is the new one"

end

end

Mod.one → "This is one"

c.callOne → "This is the new one"

private private(〈 aSymbol 〉∗)→ mod

With no arguments, sets the default visibility for subsequently defined methods to pri-
vate. With arguments, sets the named methods to have private visibility. See Access
Control starting on page 212.

module Mod

def a() end

def b() end

private

def c() end

private :a

end

Mod.private_instance_methods → ["a", "c"]

protected protected(〈 aSymbol 〉∗)→ mod

With no arguments, sets the default visibility for subsequently defined methods to pro-
tected. With arguments, sets the named methods to have protected visibility. See Access
Control starting on page 212.

public public(〈 aSymbol 〉∗)→ mod

With no arguments, sets the default visibility for subsequently defined methods to pub-
lic. With arguments, sets the named methods to have public visibility. See Access Con-
trol starting on page 212.

remove_const remove_const(aSymbol)→ anObject

Removes the definition of the given constant, returning that constant’s value. Predefined
classes and singleton objects (such as true) cannot be removed.

N
ilC

la
ss

318 CHAPTER 22. BUILT-IN CLASSES

remove_method remove_method(aSymbol)→ mod

Removes the method identified by aSymbol from the current class. For an example, see
Module.undef_method.

undef_method undef_method(aSymbol)→ mod

Prevents the current class from responding to calls to the named method. Contrast this
with remove_method, which deletes the method from the particular class; Ruby will
still search superclasses and mixed-in modules for a possible receiver.

class Parent

def hello

print "In parent\n"

end

end

class Child < Parent

def hello

print "In child\n"

end

end

c = Child.new

c.hello

class Child

remove_method :hello # remove from child, still in parent

end

c.hello

class Child

undef_method :hello # prevent any calls to ’hello’

end

c.hello

produces:

In child

In parent

prog.rb:23: undefined method `hello’ for #<Child:0x394eac> (NoMethodError)

Class NilClass < Object

The class of the singleton object nil.

Instance methods
& nil & anObject→ false

And—Returns false. As anObject is an argument to a method call, it is always eval-
uated; there is no short-circuit evaluation in this case.

nil && puts("logical and")

nil & puts("and")

produces:

and

NUMERIC 319

N
um

er
ic

^ nil ^ anObject→ true or false

Exclusive Or—Returns false if anObject is nil or false, true otherwise.

| nil | anObject→ true or false

Or—Returns false if anObject is nil or false, true otherwise.

nil? nil.nil?→ true

Always returns true.

to_a nil.to_a→ []

Always returns an empty array.

to_i nil.to_i→ 0

Always returns zero.

to_s nil.to_s→ ""

Always returns the empty string.

Class Numeric < Object

Subclasses: Float, Integer

Numeric is the fundamental base type for the concrete number classes Float, Fixnum,
and Bignum.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Instance methods
+@ +num→ num

Unary Plus—Returns the receiver’s value.

–@ –num→ aNumeric

Unary Minus—Returns the receiver’s value, negated.

abs num.abs→ aNumeric

Returns the absolute value of num.
12.abs → 12

(-34.56).abs → 34.56

-34.56.abs → 34.56

coerce num.coerce(aNumeric)→ anArray

If aNumeric is the same type as num, returns an array containing aNumeric and num.
Otherwise, returns an array with both aNumeric and num represented as Float objects.

N
um

er
ic

320 CHAPTER 22. BUILT-IN CLASSES

1.coerce(2.5) → [2.5, 1.0]

1.2.coerce(3) → [3.0, 1.2]

1.coerce(2) → [2, 1]

divmod num.divmod(aNumeric)→ anArray

Returns an array containing the quotient and modulus obtained by dividing num by
aNumeric. If q, r = x.divmod(y),

q = floor(float(x)/float(y))

x = q × y + r

The quotient is rounded toward −∞. See Table 22.6 on the next page.

11.divmod(3) → [3, 2]

11.divmod(-3) → [-4, -1]

11.divmod(3.5) → [3.0, 0.5]

(-11).divmod(3.5) → [-4.0, 3.0]

(11.5).divmod(3.5) → [3.0, 1.0]

eql? num.eql?(aNumeric)→ true or false

Returns true if num and aNumeric are the same type and have equal values.

1 == 1.0 → true

1.eql?(1.0) → false

(1.0).eql?(1.0) → true

integer? num.integer?→ true or false

Returns true if num is an Integer (including Fixnum and Bignum).

modulo num.modulo(aNumeric)→ aNumeric

Equivalent to num.divmod(aNumeric)[1].

nonzero? num.nonzero?→ num or nil

Returns num if num is not zero, nil otherwise. This behavior is useful when chaining
comparisons:

a = %w(z Bb bB bb BB a aA Aa AA A)

b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }

b → ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

remainder num.remainder(aNumeric)→ aNumeric

If num and aNumeric have different signs, returns mod−aNumeric; otherwise, returns
mod. In both cases mod is the value num.modulo(aNumeric). The differences between
remainder and modulo (%) are shown in Table 22.6 on the facing page.

zero? num.zero?→ true or false

Returns true if num has a zero value.

OBJECT 321

O
bj

ec
t

Table 22.6. Difference between modulo and remainder. The modulo operator (“%”)
always has the sign of the divisor, whereas remainder has the sign of the dividend.

a b a.divmod(b) a / b a.modulo(b) a.remainder(b)

13 4 3, 1 3 1 1

13 −4 −4,−3 −4 −3 1

−13 4 −4, 3 −4 3 −1

−13 −4 3, −1 3 −1 −1

11.5 4 2.0, 3.5 2.875 3.5 3.5

11.5 −4 −3.0,−0.5 −2.875 −0.5 3.5

−11.5 4 −3.0, 0.5 −2.875 0.5 −3.5

−11.5 −4 2.0,−3.5 2.875 −3.5 −3.5

Class Object
Subclasses: Array, Binding, Continuation, Data, Dir, Exception, FalseClass, File::Stat,
Hash, IO, MatchingData, Method, Module, NilClass, Numeric, Proc, Range, Regexp,
String, Struct, Symbol, Thread, Time, TrueClass

Object is the parent class of all classes in Ruby. Its methods are therefore available to
all objects unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally
accessible. Although the instance methods of Object are defined by the Kernel mod-
ule, we have chosen to document them here for clarity.

In the descriptions that follow, the parameter aSymbol refers to a symbol, which is
either a quoted string or a Symbol (such as :name).

Instance methods
== obj == anObject→ true or false

Equality—At the Object level, == returns true only if obj and anObject are the same
object. Typically, this method is overridden in descendent classes to provide class-
specific meaning.

=== obj === anObject→ true or false

Case Equality—A synonym for Object#==, but typically overridden by descendents
to provide meaningful semantics in case statements.

=~ obj =~ anObject→ false

Pattern Match—Overridden by descendents (notably Regexp and String) to provide
meaningful pattern-match semantics.

_ _id_ _ obj._ _id_ _→ aFixnum

Synonym for Object#id.

O
bj

ec
t

322 CHAPTER 22. BUILT-IN CLASSES

_ _send_ _ obj._ _send_ _(aSymbol 〈 , args 〉+)→ anObject

Synonym for Object#send.

class obj.class→ aClass

Returns the class of obj (synonym for Object#type).

clone obj.clone→ anObject

Produces a shallow copy of obj—the instance variables of obj are copied, but not the
objects they reference. Copies the frozen and tainted state of obj. See also the discussion
under Object#dup.

class Klass

attr_accessor :str

end

s1 = Klass.new → #<Klass:0x394cf4>

s1.str = "Hello" → "Hello"

s2 = s1.clone → #<Klass:0x394c54 @str="Hello">

s2.str[1,4] = "i" → "i"

s1.inspect → "#<Klass:0x394cf4 @str=\"Hi\">"

s2.inspect → "#<Klass:0x394c54 @str=\"Hi\">"

display obj.display(port=$>)→ nil

Prints obj on the given port (default $>). Equivalent to:

def display(port=$>)

port.write self

end

dup obj.dup→ anObject

Produces a shallow copy of obj—the instance variables of obj are copied, but not the
objects they reference. dup copies the tainted state of obj. See also the discussion under
Object#clone. In general, clone and dupmay have different semantics in descendent
classes. While clone is used to duplicate an object, including its internal state, dup
typically uses the class of the descendent object to create the new instance.

eql? obj.eql?(anObject)→ true or false

Returns true if obj and anObject have the same value. Used by Hash to test members
for equality. For objects of class Object, eql? is synonymous with ==. Subclasses
normally continue this tradition, but there are exceptions. Numeric types, for example,
perform type conversion across ==, but not across eql?, so:

1 == 1.0 → true

1.eql? 1.0 → false

equal? obj.equal?(anObject)→ true or false

Returns true if obj and anObject have the same object ID. This method should not be
overridden by subclasses.

OBJECT 323

O
bj

ec
t

a = [’cat’, ’dog’]

b = [’cat’, ’dog’]

a == b → true

a.id == b.id → false

a.eql?(b) → true

a.equal?(b) → false

extend obj.extend(〈 aModule 〉+)→ obj

Adds to obj the instance methods from each module given as a parameter.

module Mod

def hello

"Hello from Mod.\n"

end

end

class Klass

def hello

"Hello from Klass.\n"

end

end

k = Klass.new

k.hello → "Hello from Klass.\n"

k.extend(Mod) → #<Klass:0x394e98>

k.hello → "Hello from Mod.\n"

freeze obj.freeze→ obj

Prevents further modifications to obj. A TypeError will be raised if modification is
attempted. There is no way to unfreeze a frozen object. See also Object#frozen?.

a = ["a", "b", "c"]

a.freeze

a << "z"

produces:

prog.rb:3:in `<<’: can’t modify frozen array (TypeError)

from prog.rb:3

frozen? obj.frozen?→ true or false

Returns the freeze status of obj.

a = ["a", "b", "c"]

a.freeze → ["a", "b", "c"]

a.frozen? → true

hash obj.hash→ aFixnum

Generates a Fixnum hash value for this object. This function must have the property
that a.eql?(b) implies a.hash == b.hash. The hash value is used by class Hash.
Any hash value that exceeds the capacity of a Fixnum will be truncated before being
used.

O
bj

ec
t

324 CHAPTER 22. BUILT-IN CLASSES

id obj.id→ aFixnum

Returns an integer identifier for obj. The same number will be returned on all calls to id
for a given object, and no two active objects will share an id. Object#id is a different
concept from the :name notation, which returns the symbol id of name.

inspect obj.inspect→ aString

Returns a string containing a human-readable representation of obj. If not overridden,
uses the to_s method to generate the string.

[1, 2, 3..4, ’five’].inspect → "[1, 2, 3..4, \"five\"]"

Time.new.inspect → "Thu Dec 26 20:05:14 MSK 2002"

instance_eval obj.instance_eval(aString 〈 , file 〈 , line 〉 〉)→ anObject
obj.instance_eval { block } → anObject

Evaluates a string containing Ruby source code, or the given block, within the context
of the receiver (obj). In order to set the context, the variable self is set to obj while the
code is executing, giving the code access to obj’s instance variables. In the version of
instance_eval that takes a String, the optional second and third parameters supply
a filename and starting line number that are used when reporting compilation errors.

class Klass

def initialize

@secret = 99

end

end

k = Klass.new

k.instance_eval { @secret } → 99

instance_of? obj.instance_of?(aClass)→ true or false

Returns true if obj is an instance of the given class. See also Object#kind_of?.

instance_variables obj.instance_variables→ anArray

Returns an array of instance variable names for the receiver.

is_a? obj.is_a?(aClass)→ true or false

Synonym for Object#kind_of?.

kind_of? obj.kind_of?(aClass)→ true or false

Returns true if aClass is the class of obj, or if aClass is one of the superclasses of obj
or modules included in obj.

a = 1

a.instance_of? Numeric → false

a.instance_of? Integer → false

a.instance_of? Fixnum → true

a.instance_of? Comparable → false

a.kind_of? Numeric → true

a.kind_of? Integer → true

a.kind_of? Fixnum → true

a.kind_of? Comparable → true

OBJECT 325

O
bj

ec
t

method obj.method(aSymbol)→ aMethod

Looks up the named method as a receiver in obj, returning a Method object (or raising
NameError). The Method object acts as a closure in obj’s object instance, so instance
variables and the value of self remain available.

class Demo

def initialize(n)

@iv = n

end

def hello()

"Hello, @iv = #{@iv}"

end

end

k = Demo.new(99)

m = k.method(:hello)

m.call → "Hello, @iv = 99"

l = Demo.new(’Fred’)

m = l.method("hello")

m.call → "Hello, @iv = Fred"

method_missing obj.method_missing(aSymbol 〈 , *args 〉)→ anObject

Invoked by Ruby when obj is sent a message it cannot handle. aSymbol is the symbol
for the method called, and args are any arguments that were passed to it. The example
below creates a class Roman, which responds to methods with names consisting of
roman numerals, returning the corresponding integer values.

class Roman

def romanToInt(str)

...

end

def method_missing(methId)

str = methId.id2name

romanToInt(str)

end

end

r = Roman.new

r.iv → 4

r.xxiii → 23

r.mm → 2000

methods obj.methods→ anArray

Returns a list of the names of methods publicly accessible in obj. This will include all
the methods accessible in obj’s ancestors.

O
bj

ec
t

326 CHAPTER 22. BUILT-IN CLASSES

class Klass

def kMethod()

end

end

k = Klass.new

k.methods[0..9] → ["kMethod", "to_a", "eql?", "dup", "send",

"display", "hash", "singleton_methods",

"nil?", "freeze"]

k.methods.length → 40

nil? obj.nil?→ true or false

All objects except nil return false.

private_methods obj.private_methods→ anArray

Returns a list of private methods accessible within obj. This will include the private
methods in obj’s ancestors, along with any mixed-in module functions.

protected_methods obj.protected_methods→ anArray

Returns the list of protected methods accessible to obj.

public_methods obj.public_methods→ anArray

Synonym for Object#methods.

respond_to? obj.respond_to?(aSymbol, includePriv=false)→ true or false

Returns true if obj responds to the given method. Private methods are included in the
search only if the optional second parameter evaluates to true.

send obj.send(aSymbol 〈 , args 〉∗)→ anObject

Invokes the method identified by aSymbol, passing it any arguments specified. You can
use __send__ if the name send clashes with an existing method in obj.

class Klass

def hello(*args)

"Hello " + args.join(’ ’)

end

end

k = Klass.new

k.send :hello, "gentle", "readers" → "Hello gentle readers"

singleton_methods obj.singleton_methods→ anArray

Returns an array of the names of singleton methods for obj.

class Klass

def Klass.classMethod

end

end

k = Klass.new

def k.sm()

end

Klass.singleton_methods → ["classMethod"]

k.singleton_methods → ["sm"]

PROC 327

P
ro

c

taint obj.taint→ obj

Marks obj as tainted (see Chapter 20, which begins on page 231).

tainted? obj.tainted?→ true or false

Returns true if the object is tainted.

to_a obj.to_a→ anArray

Returns an array representation of obj. For objects of class Object and others that
don’t explicitly override the method, the return value is an array containing self. This
method is deprecated in Ruby 1.7 and later because only objects which really behave
as Array are permitted to respond to this message.

self.to_a → -:1: warning: default `to_a’ will be

obsolete\n[main]

"hello".to_a → ["hello"]

Time.new.to_a → [15, 5, 20, 26, 12, 2002, 4, 360, false, "MSK"]

to_s obj.to_s→ aString

Returns a string representing obj. The default to_s prints the object’s class and an
encoding of the object id. As a special case, the top-level object that is the initial exe-
cution context of Ruby programs returns “main.”

class obj.class→ aClass

Returns the class of obj.

untaint obj.untaint→ obj

Removes the taint from obj.

Class Proc < Object

Proc objects are blocks of code that have been bound to a set of local variables. Once
bound, the code may be called in different contexts and still access those variables.

def genTimes(factor)

return Proc.new {|n| n*factor }

end

times3 = genTimes(3)

times5 = genTimes(5)

times3.call(12) → 36

times5.call(5) → 25

times3.call(times5.call(4)) → 60

P
ro

c

328 CHAPTER 22. BUILT-IN CLASSES

Class methods
new Proc.new 〈 { block } 〉 → aProc

Creates a new Proc object, bound to the current context. It may be called without a
block only within a method with an attached block, in which case that block is con-
verted to the Proc object.

def procFrom

Proc.new

end

aProc = procFrom { "hello" }

aProc.call → "hello"

Instance methods
[] prc[〈 params 〉∗]→ anObject

Synonym for Proc.call.

arity prc.arity→ anInteger

Returns the number of arguments required by the block. If the block takes no argu-
ments, returns −1. If it takes one argument, returns −2. Otherwise, returns a positive
argument count unless the last argument is prefixed with *, in which case the argument
count is negated. The number of required arguments is anInteger for positive values,
and (anInteger+1).abs otherwise.

Proc.new {||}.arity → 0

Proc.new {|a|}.arity → -1

Proc.new {|a,b|}.arity → 2

Proc.new {|a,b,c|}.arity → 3

Proc.new {|*a|}.arity → -1

Proc.new {|a,*b|}.arity → -2

call prc.call(〈 params 〉∗)→ anObject

Invokes the block, setting the block’s parameters to the values in params using the same
rules as used by parallel assignment. Returns the value of the last expression evaluated
in the block.
aProc = Proc.new {|a, *b| b.collect {|i| i*a }}

aProc.call(9, 1, 2, 3) → [9, 18, 27]

aProc[9, 1, 2, 3] → [9, 18, 27]

RANGE 329

R
an

ge

Class Range < Object

A Range represents an interval—a set of values with a start and an end. Ranges may be
constructed using the s..e and s...e literals, or with Range.new. Ranges constructed
using .. run from the start to the end inclusively. Those created using ... exclude the
end value. When used as an iterator, ranges return each value in the sequence.

(-1..-5).to_a → []

(-5..-1).to_a → [-5, -4, -3, -2, -1]

(’a’..’e’).to_a → ["a", "b", "c", "d", "e"]

(’a’...’e’).to_a → ["a", "b", "c", "d"]

Ranges can be constructed using objects of any type, as long as the objects can be
compared using their <=> operator and they support the succ method to return the next
object in sequence.

class Xs # represent a string of ’x’s

include Comparable

attr :length

def initialize(n)

@length = n

end

def succ

Xs.new(@length + 1)

end

def <=>(other)

raise TypeError unless other.kind_of? Xs

@length <=> other.length

end

def inspect

’x’ * @length

end

end

r = Xs.new(3)..Xs.new(6) → xxx..xxxxxx

r.to_a → [xxx, xxxx, xxxxx, xxxxxx]

r.member?(Xs.new(5)) → true

Mixes in

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
new Range.new(start, end, exclusive=false)→ aRange

Constructs a range using the given start and end. If the third parameter is omitted or is
false, the range will include the end object; otherwise, it will be excluded.

R
an

ge

330 CHAPTER 22. BUILT-IN CLASSES

Instance methods
=== rng === anObject→ true or false

Returns true if anObject is an element of rng, false otherwise. Conveniently, === is
the comparison operator used by case statements.

case 79

when 1..50 then print "low\n"

when 51..75 then print "medium\n"

when 76..100 then print "high\n"

end

produces:
high

begin rng.begin→ anObject

Returns the first object of rng.

each rng.each {| i | block } → rng

Iterates over the elements rng, passing each in turn to the block.

(10..15).each do |n|

print n, ’ ’

end

produces:
10 11 12 13 14 15

end rng.end→ anObject

Returns the object that defines the end of rng. See also Range#length.

(1..10).end → 10

(1...10).end → 10

exclude_end? rng.exclude_end?→ true or false

Returns true if rng excludes its end value.

first rng.first→ anObject

Returns the first object in rng.

last rng.last→ anObject

Synonym for Range#end.

REGEXP 331

R
eg

ex
p

Class Regexp < Object

A Regexp holds a regular expression, used to match a pattern against strings. Regexps
are created using the /.../ and %r... literals, and by the Regexp.new constructor.

Class constants

EXTENDED Ignore spaces and newlines in regexp.
IGNORECASE Matches are case insensitive.
MULTILINE Newlines treated as any other character.

Class methods
compile Regexp.compile(pattern 〈 , options 〈 , lang 〉 〉)→ aRegexp

Synonym for Regexp.new.

escape Regexp.escape(aString)→ aNewString

Escapes any characters that would have special meaning in a regular expression. For
any string, Regexp.escape(str)=~str will be true.

Regexp.escape(’\\[]*?{}.’) → \\\[\]*\?\{\}\.

last_match Regexp.last_match→ aMatchData

Returns the MatchData object generated by the last successful pattern match. Equiva-
lent to reading the global variable $~. MatchData is described on page 307.

new Regexp.new(pattern 〈 , options 〈 , lang 〉 〉)→ aRegexp

Constructs a new regular expression from pattern, which can be either a String or a
Regexp (in which case that regexp’s options are not propagated). If options is a Fixnum,
it should be one or more of the constants Regexp::EXTENDED,Regexp::IGNORECASE,
and Regexp::POSIXLINE, or-ed together. Otherwise, if options is not nil, the regexp
will be case insensitive. The lang parameter enables multibyte support for the regexp:
‘n’, ‘N’ = none, ‘e’, ‘E’ = EUC, ‘s’, ‘S’ = SJIS, ‘u’, ‘U’ = UTF-8.

r1 = Regexp.new(’^[a-z]+:\\s+\w+’) → /^[a-z]+:\s+\w+/

r2 = Regexp.new(r1, true) → /^[a-z]+:\s+\w+/i

r3 = Regexp.new(r2, Regexp::EXTENDED) → /^[a-z]+:\s+\w+/x

quote Regexp.quote(aString)→ aNewString

Synonym for Regexp.escape.

R
eg

ex
p

332 CHAPTER 22. BUILT-IN CLASSES

Instance methods
== rxp == aRegexp→ true or false

Equality—Two regexps are equal if their patterns are identical, they have the same
character set code, and their casefold? values are the same.

/abc/ == /abc/x → false

/abc/ == /abc/i → false

/abc/u == /abc/n → false

=== rxp === aString→ true or false

Case Equality—Synonym for Regexp#=~ used in case statements.

a = "HELLO"

case a

when /^[a-z]*$/; print "Lower case\n"

when /^[A-Z]*$/; print "Upper case\n"

else; print "Mixed case\n"

end

produces:
Upper case

=~ rxp =~ aString→ anInteger or nil

Match—Matches rxp against aString, returning the offset of the start of the match or
nil if the match failed.

/SIT/ =~ "insensitive" → nil

/SIT/i =~ "insensitive" → 5

~ ~ rxp→ anInteger or nil

Match—Matches rxp against the contents of $_. Equivalent to rxp =~ $_.

$_ = "input data"

~ /at/ → 7

casefold? rxp.casefold?→ true or false

Returns the value of the case-insensitive flag.

kcode rxp.kcode→ aString

Returns the character set code for the regexp.

match rxp.match(aString)→ aMatchData or nil

Returns a MatchData object (see page 307) describing the match, or nil if there was
no match. This is equivalent to retrieving the value of the special variable $~ following
a normal match.

/(.)(.)(.)/.match("abc")[2] → "b"

source rxp.source→ aString

Returns the original string of the pattern.

STRING 333

S
tr

in
g

/ab+c/ix.source → "ab+c"

Class String < Object

A String object holds and manipulates an arbitrary sequence of bytes, typically repre-
senting characters. String objects may be created using String.new or as literals (see
page 184).

Because of aliasing issues, users of strings should be aware of the methods that modify
the contents of a String object. Typically, methods with names ending in “!” mod-
ify their receiver, while those without a “!” return a new String. However, there are
exceptions, such as String#[]= .

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
new String.new(aString)→ aNewString

Returns a new string object containing a copy of aString.

Instance methods
% str % arg→ aString

Format—Uses str as a format specification, and returns the result of applying it to arg.
If the format specification contains more than one substitution, then arg must be an
Array containing the values to be substituted. See Kernel.sprintf on page 387 for
details of the format string.

"%05d" % 123 → "00123"

"%-5s: %08x" % ["ID", self.id] → "ID␣␣␣:␣001d1d12"

* str * anInteger→ aString

Copy—Returns a new String containing anInteger copies of the receiver.

"Ho! " * 3 → "Ho! Ho! Ho! "

+ str + aString→ aNewString

Concatenation—Returns a new String containing aString concatenated to str.

"Hello from " + self.to_s → "Hello from main"

S
tr

in
g

334 CHAPTER 22. BUILT-IN CLASSES

<< str << aFixnum→ str
str << anObject→ str

Append—Concatenates the given object to str. If the object is a Fixnum between 0 and
255, it is converted to a character before concatenation.

a = "hello "

a << "world" → "hello world"

a << 33 → "hello world!"

a → "hello world!"

<=> str <=> aString→−1, 0, +1

Comparison—Returns−1 if str is less than, 0 if str is equal to, and +1 if str is greater
than aString. If the strings are of different lengths, and the strings are equal when
compared up to the shortest length, then the longer string is considered greater than
the shorter one. If the variable $= is false, the comparison is based on comparing the
binary values of each character in the string. If $= is not false, then the comparison is
case insensitive.1

<=> is the basis for the methods <, <=, >, >=, and between?, included from module
Comparable. The method String#== does not use Comparable#==.

"abcdef" <=> "abcde" → 1

"abcdef" <=> "abcdef" → 0

"abcdef" <=> "abcdefg" → -1

"abcdef" <=> "ABCDEF" → 1\n-:5: warning: modifying $= is

deperecated

$= = true

"abcdef" <=> "ABCDEF" → 0

== str == anObject→ true or false

Equality—If anObject is not a String, returns false. Otherwise, returns true if str
<=> anObject returns zero.

=== str === anObject→ true or false

Case Equality—Synonym for String#==.

=~ str =~ anObject→ aFixnum or nil

Match—If anObject is a Regexp or a String, uses it as a pattern to match against str.
Returns the position the match starts, or nil if there is no match. Otherwise, invokes
anObject.=~, passing str as an argument. The default =~ in Object returns false.

"cat o’ 9 tails" =~ "\\d" → nil

"cat o’ 9 tails" =~ /\d/ → 7

"cat o’ 9 tails" =~ 9 → false

1. The locale is ignored when case-insensitive comparisons are performed, so “ö” will not match “Ö”.

STRING 335

S
tr

in
g

[] str[aFixnum]→ aFixnum or nil
str[aFixnum, aFixnum]→ aString or nil

str[aRange]→ aString or nil
str[aRegexp]→ aString or nil
str[aString]→ aString or nil

Element Reference—If passed a single Fixnum, returns the code of the character at that
position. If passed two Fixnum objects, returns a substring starting at the offset given
by the first, and a length given by the second. If given a range, a substring containing
characters at offsets given by the range is returned. In all three cases, if an offset is
negative, it is counted from the end of str. Returns nil if the initial offset falls outside
the string, the length is negative, or the beginning of the range is greater than the end.

If a Regexp is supplied, the matching portion of str is returned. If a String is given,
that string is returned if it occurs in str. In both cases, nil is returned if there is no
match.

a = "hello there"

a[1] → 101

a[1,3] → "ell"

a[1..3] → "ell"

a[-3,2] → "er"

a[-4..-2] → "her"

a[-2..-4] → nil

a[/th[aeiou]/] → "the"

a["lo"] → "lo"

a["bye"] → nil

[]= str[aFixnum] = aFixnum
str[aFixnum] = aString

str[aFixnum, aFixnum] = aString
str[aRange] = aString

str[aRegexp] = aString
str[aString] = aString

Element Assignment—Replaces some or all of the content of str. The portion of the
string affected is determined using the same criteria as String#[]. If the replacement
string is not the same length as the text it is replacing, the string will be adjusted accord-
ingly. The forms that take a Fixnum will raise an IndexError if the value is out of
range; the Range form will raise a RangeError, and the Regexp and String forms
will silently ignore the assignment.

S
tr

in
g

336 CHAPTER 22. BUILT-IN CLASSES

a = "hello"; a[2] = 96; a → "he`lo"

a = "hello"; a[2, 4] = "xyz"; a → "hexyz"

a = "hello"; a[-4, 2] = "xyz"; a → "hxyzlo"

a = "hello"; a[2..4] = "xyz"; a → "hexyz"

a = "hello"; a[-4..-2] = "xyz"; a → "hxyzo"

a = "hello"; a[/[el]+/] = "xyz"; a → "hxyzo"

a = "hello"; a["l"] = "xyz"; a → "hexyzlo"

a = "hello"; a["ll"] = "xyz"; a → "hexyzo"\nprog.rb:9:in

`[]=’: string not matched

(IndexError)\n from

prog.rb:9

a = "hello"; a["bad"] = "xyz"; a

a = "hello"; a[2, 0] = "xyz"; a

~ ~ str→ aFixnum or nil

Equivalent to $_ =~ str .

capitalize str.capitalize→ aString

Returns a copy of str with the first character converted to uppercase and the remainder
to lowercase.
"hello".capitalize → "Hello"

"HELLO".capitalize → "Hello"

"123ABC".capitalize → "123abc"

capitalize! str.capitalize!→ str or nil

Modifies str by converting the first character to uppercase and the remainder to lower-
case. Returns nil if no changes are made.

a = "hello"

a.capitalize! → "Hello"

a → "Hello"

a.capitalize! → nil

center str.center(anInteger)→ aString

If anInteger is greater than the length of str, returns a new String of length anInteger
with str centered between spaces; otherwise, returns str.

"hello".center(4) → "hello"

"hello".center(20) → "␣␣␣␣␣␣␣hello␣␣␣␣␣␣␣␣"

chomp str.chomp(aString=$/)→ aString

Returns a new String with the given record separator removed from the end of str (if
present).

"hello".chomp → "hello"

"hello\n".chomp → "hello"

"hello \n there".chomp → "hello \n there"

"hello".chomp("llo") → "he"

chomp! str.chomp!(aString=$/)→ str or nil

Modifies str in place as described for String#chomp, returning str, or nil if no mod-
ifications were made.

STRING 337

S
tr

in
g

chop str.chop→ aString

Returns a new String with the last character removed. If the string ends with \r\n,
both characters are removed. Applying chop to an empty string returns an empty string.
String#chomp is often a safer alternative, as it leaves the string unchanged if it doesn’t
end in a record separator.

"string\r\n".chop → "string"

"string\n\r".chop → "string\n"

"string\n".chop → "string"

"string".chop → "strin"

"x".chop.chop → ""

chop! str.chop!→ str or nil

Processes str as for String#chop, returning str, or nil if str is the empty string. See
also String#chomp!.

concat str.concat(aFixnum)→ str
str.concat(anObject)→ str

Synonym for String#<<.

count str.count(〈 aString 〉+)→ aFixnum

Each aString parameter defines a set of characters to count. The intersection of these
sets defines the characters to count in str. Any aString that starts with a caret (^) is
negated. The sequence c1–c2 means all characters between c1 and c2.

a = "hello world"

a.count "lo" → 5

a.count "lo", "o" → 2

a.count "hello", "^l" → 4

a.count "ej-m" → 4

crypt str.crypt(aString)→ aString

Applies a one-way cryptographic hash to str by invoking the standard library function
crypt. The argument is the salt string, which should be two characters long, each
character drawn from [a-zA-Z0-9./].

delete str.delete(〈 aString 〉+)→ aString

Returns a copy of str with all characters in the intersection of its arguments deleted.
Uses the same rules for building the set of characters as String#count.

"hello".delete "l","lo" → "heo"

"hello".delete "lo" → "he"

"hello".delete "aeiou", "^e" → "hell"

"hello".delete "ej-m" → "ho"

delete! str.delete!(〈 aString 〉+)→ str or nil

Performs a delete operation in place, returning str, or nil if str was not modified.

S
tr

in
g

338 CHAPTER 22. BUILT-IN CLASSES

downcase str.downcase→ aString

Returns a copy of str with all uppercase letters replaced with their lowercase counter-
parts. The operation is locale insensitive—only characters “A” to “Z” are affected.

"hEllO".downcase → "hello"

downcase! str.downcase!→ str or nil

Downcases the contents of str, returning nil if no changes were made.

dump str.dump→ aString

Produces a version of str with all nonprinting characters replaced by \nnn notation and
all special characters escaped.

each str.each(aString=$/) {| substr | block } → str

Splits str using the supplied parameter as the record separator ($/ by default), passing
each substring in turn to the supplied block. If a zero-length record separator is sup-
plied, the string is split on \n characters, except that multiple successive newlines are
appended together.

print "Example one\n"

"hello\nworld".each {|s| p s}

print "Example two\n"

"hello\nworld".each(’l’) {|s| p s}

print "Example three\n"

"hello\n\n\nworld".each(’’) {|s| p s}

produces:
Example one

"hello\n"

"world"

Example two

"hel"

"l"

"o\nworl"

"d"

Example three

"hello\n\n\n"

"world"

each_byte str.each_byte {| aFixnum | block } → str

Passes each byte in str to the given block.

"hello".each_byte {|c| print c, ’ ’ }

produces:
104 101 108 108 111

each_line str.each_line(aString=$/) {| substr | block } → str

Synonym for String#each.

empty? str.empty?→ true or false

Returns true if str has a length of zero.

STRING 339

S
tr

in
g

"hello".empty? → false

"".empty? → true

gsub str.gsub(pattern, replacement)→ aString
str.gsub(pattern) {| match | block } → aString

Returns a copy of str with all occurrences of pattern replaced with either replacement
or the value of the block. If a string is used as the replacement, special variables from
the match (such as $& and $1) cannot be substituted into it, as substitution into the
string occurs before the pattern match starts. However, the sequences \1, \2, and so on
may be used to interpolate successive groups in the match. These sequences are shown
in Table 22.7 on the following page.

In the block form, the current match is passed in as a parameter, and variables such as
$1, $2, $‘, $&, and $’ will be set appropriately. The value returned by the block will
be substituted for the match on each call.

The result inherits any tainting in the original string or any supplied replacement string.

"hello".gsub(/[aeiou]/, ’*’) → "h*ll*"

"hello".gsub(/([aeiou])/, ’<\1>’) → "h<e>ll<o>"\n-:3:

warning: string

pattern instead of

regexp; metacharacters

no longer effective

"hello".gsub(’.’) {|s| s[0].to_s + ’ ’} → "hello"

gsub! str.gsub!(pattern, replacement)→ str or nil
str.gsub!(pattern) {| match | block } → str or nil

Performs the substitutions of String#gsub in place, returning str, or nil if no substi-
tutions were performed.

hash str.hash→ aFixnum

Generates a Fixnum hash value for str. If $= is true, the hash will be case insensitive.

$= = true → -:1: warning:

modifying $= is

deperecated

hash = { ’cat’ => ’Feline’, ’dog’ => ’canine’ }

hash[’cat’] → "Feline"

hash[’cAt’] → nil\n-:5: warning:

modifying $= is

deperecated

$= = false

hash.rehash # re-calculate hash values → {"cat"=>"Feline",

"dog"=>"canine"}

hash[’cat’] → "Feline"

hash[’cAt’] → nil

hex str.hex→ anInteger

Treats leading characters from str as a string of hexadecimal digits (with an optional
sign and an optional 0x) and returns the corresponding number. Zero is returned on
error.

S
tr

in
g

340 CHAPTER 22. BUILT-IN CLASSES

Table 22.7. Backslash sequences in substitution strings

Sequence Text That Is Substituted

\1, \2, ... \9 The value matched by the nth grouped subexpression
\& The last match
\‘ The part of the string before the match
\’ The part of the string after the match
\+ The highest-numbered group matched

"0x0a".hex → 10

"-1234".hex → -4660

"0".hex → 0

"wombat".hex → 0

include? str.include? aString→ true or false
str.include? aFixnum→ true or false

Returns true if str contains the given string or character.

"hello".include? "lo" → true

"hello".include? "ol" → false

"hello".include? ?h → true

index str.index(aString 〈 , anOffset 〉)→ aFixnum or nil
str.index(aFixnum 〈 , anOffset 〉)→ aFixnum or nil
str.index(aRegexp 〈 , anOffset 〉)→ aFixnum or nil

Returns the index of the first occurrence of the given substring, character, or pattern in
str. Returns nil if not found. If the second parameter is present, it specifies the position
in the string to begin the search.

"hello".index(’e’) → 1

"hello".index(’lo’) → 3

"hello".index(’a’) → nil

"hello".index(101) → 1

"hello".index(/[aeiou]/, -3) → 4

intern str.intern→ aSymbol

Returns the Symbol corresponding to str, creating the symbol if it did not previously
exist. See Symbol#id2name on page 352.

"Koala".intern → :Koala

length str.length→ anInteger

Returns the length of str.

ljust str.ljust(anInteger)→ aString

If anInteger is greater than the length of str, returns a new String of length anInteger
with str left justified and space padded; otherwise, returns str.

"hello".ljust(4) → "hello"

"hello".ljust(20) → "hello␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣"

STRING 341

S
tr

in
g

next str.next→ aString

Synonym for String#succ.

next! str.next!→ str

Synonym for String#succ!.

oct str.oct→ anInteger

Treats leading characters of str as a string of octal digits (with an optional sign) and
returns the corresponding number. Returns 0 if the conversion fails.

"123".oct → 83

"-377".oct → -255

"bad".oct → 0

"0377bad".oct → 255

replace str.replace(aString)→ str

Replaces the contents and taintedness of str with the corresponding values in aString.

s = "hello" → "hello"

s.replace "world" → "world"

reverse str.reverse→ aString

Returns a new string with the characters from str in reverse order.

"stressed".reverse → "desserts"

reverse! str.reverse!→ str

Reverses str in place.

rindex str.rindex(aString 〈 , aFixnum 〉)→ aFixnum or nil
str.rindex(aFixnum 〈 , aFixnum 〉)→ aFixnum or nil
str.rindex(aRegexp 〈 , aFixnum 〉)→ aFixnum or nil

Returns the index of the last occurrence of the given substring, character, or pattern in
str. Returns nil if not found. If the second parameter is present, it specifies the position
in the string to end the search—characters beyond this point will not be considered.

"hello".rindex(’e’) → 1

"hello".rindex(’l’) → 3

"hello".rindex(’a’) → nil

"hello".rindex(101) → 1

"hello".rindex(/[aeiou]/, -2) → 1

rjust str.rjust(anInteger)→ aString

If anInteger is greater than the length of str, returns a new String of length anInteger
with str right justified and space padded; otherwise, returns str.

"hello".rjust(4) → "hello"

"hello".rjust(20) → "␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣hello"

S
tr

in
g

342 CHAPTER 22. BUILT-IN CLASSES

scan str.scan(pattern)→ anArray
str.scan(pattern) {| match, . . . | block } → str

Both forms iterate through str, matching the pattern (which may be a Regexp or a
String). For each match, a result is generated and either added to the result array or
passed to the block. If the pattern contains no groups, each individual result consists of
the matched string, $&. If the pattern contains groups, each individual result is itself an
array containing one entry per group.

a = "cruel world"

a.scan(/\w+/) → ["cruel", "world"]

a.scan(/.../) → ["cru", "el ", "wor"]

a.scan(/(...)/) → [["cru"], ["el "], ["wor"]]

a.scan(/(..)(..)/) → [["cr", "ue"], ["l ", "wo"]]

And the block form:

a.scan(/\w+/) {|w| print "<<#{w}>> " }

print "\n"

a.scan(/(.)(.)/) {|a,b| print b, a }

print "\n"

produces:
<<cruel>> <<world>>

rceu lowlr

size str.size→ anInteger

Synonym for String#length.

slice str.slice(aFixnum)→ aFixnum or nil
str.slice(aFixnum, aFixnum)→ aString or nil

str.slice(aRange)→ aString or nil
str.slice(aRegexp)→ aString or nil
str.slice(aString)→ aString or nil

Synonym for String#[].

a = "hello there"

a.slice(1) → 101

a.slice(1,3) → "ell"

a.slice(1..3) → "ell"

a.slice(-3,2) → "er"

a.slice(-4..-2) → "her"

a.slice(-2..-4) → nil

a.slice(/th[aeiou]/) → "the"

a.slice("lo") → "lo"

a.slice("bye") → nil

slice! str.slice!(aFixnum)→ aFixnum or nil
str.slice!(aFixnum, aFixnum)→ aString or nil

str.slice!(aRange)→ aString or nil
str.slice!(aRegexp)→ aString or nil
str.slice!(aString)→ aString or nil

Deletes the specified portion from str, and returns the portion deleted. The forms that

STRING 343

S
tr

in
g

take a Fixnum will raise an IndexError if the value is out of range; the Range form
will raise a RangeError, and the Regexp and String forms will silently ignore the
assignment.

string = "this is a string"

string.slice!(2) → 105

string.slice!(3..6) → " is "

string.slice!(/s.*t/) → "sa st"

string.slice!("r") → "r"

string → "thing"

split str.split(pattern=$;, 〈 limit 〉)→ anArray

Divides str into substrings based on a delimiter, returning an array of these substrings.

If pattern is a String, then its contents are used as the delimiter when splitting str. If
pattern is a single space, str is split on whitespace, with leading whitespace and runs
of contiguous whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern matches. Whenever the pattern
matches a zero-length string, str is split into individual characters.

If pattern is omitted, the value of $; is used. If $; is nil (which is the default), str is
split on whitespace as if ‘ ’ were specified.

If the limit parameter is omitted, trailing null fields are supressed. If limit is a positive
number, at most that number of fields will be returned (if limit is 1, the entire string is
returned as the only entry in an array). If negative, there is no limit to the number of
fields returned, and trailing null fields are not supressed.

" now’s the time".split → ["now’s", "the", "time"]

" now’s the time".split(’ ’) → ["now’s", "the", "time"]

" now’s the time".split(/ /) → ["", "now’s", "", "the", "time"]

"1, 2.34,56, 7".split(/,\s*/) → ["1", "2.34", "56", "7"]

"hello".split(//) → ["h", "e", "l", "l", "o"]

"hello".split(//, 3) → ["h", "e", "llo"]

"hi mom".split(/\s*/) → ["h", "i", "m", "o", "m"]

"mellow yellow".split("ello") → ["m", "w y", "w"]

"1,2,,3,4,,".split(’,’) → ["1", "2", "", "3", "4"]

"1,2,,3,4,,".split(’,’, 4) → ["1", "2", "", "3,4,,"]

"1,2,,3,4,,".split(’,’, -4) → ["1", "2", "", "3", "4", "", ""]

squeeze str.squeeze(〈 aString 〉∗)→ aNewString

Builds a set of characters from the aString parameter(s) using the procedure described
for String#count on page 337. Returns a new string where runs of the same character
that occur in this set are replaced by a single character. If no arguments are given, all
runs of identical characters are replaced by a single character.

"yellow moon".squeeze → "yelow mon"

" now is the".squeeze(" ") → " now is the"

"putters shoot balls".squeeze("m-z") → "puters shot balls"

squeeze! str.squeeze!(〈 aString 〉∗)→ str or nil

Squeezes str in place, returning either str, or nil if no changes were made.

S
tr

in
g

344 CHAPTER 22. BUILT-IN CLASSES

strip str.strip→ aString

Returns a copy of str with leading and trailing whitespace removed.

" hello ".strip → "hello"

"\tgoodbye\r\n".strip → "goodbye"

strip! str.strip!→ str or nil

Removes leading and trailing whitespace from str. Returns nil if str was not altered.

sub str.sub(pattern, replacement)→ aString
str.sub(pattern) {| match | block } → aString

Returns a copy of str with the first occurrence of pattern replaced with either replace-
ment or the value of the block. If the string form of the method is used, special variables
such as $& will not be useful, as substitution into the string occurs before the pattern
match starts. However, the sequences \1, \2, listed in Table 22.7 on page 340 may be
used.

In the block form, the current match is passed in as a parameter, and variables such as
$1, $2, $‘, $&, and $’will be set appropriately. The value returned by the block will be
substituted for the match on each call.

"hello".sub(/[aeiou]/, ’*’) → "h*llo"

"hello".sub(/([aeiou])/, ’<\1>’) → "h<e>llo"\n-:3:

warning: string

pattern instead of

regexp; metacharacters

no longer effective

"hello".sub(’.’) {|s| s[0].to_s + ’ ’ } → "hello"

sub! str.sub!(pattern, replacement)→ str or nil
str.sub!(pattern) {| match | block } → str or nil

Performs the substitutions of String#sub in place, returning str, or nil if no substi-
tutions were performed.

succ str.succ→ aString

Returns the successor to str. The successor is calculated by incrementing characters
starting from the rightmost alphanumeric (or the rightmost character if there are no
alphanumerics) in the string. Incrementing a digit always results in another digit, and
incrementing a letter results in another letter of the same case. Incrementing nonalpha-
numerics uses the underlying character set’s collating sequence.

If the increment generates a “carry,” the character to the left of it is incremented. This
process repeats until there is no carry, adding an additional character if necessary.

"abcd".succ → "abce"

"THX1138".succ → "THX1139"

"<<koala>>".succ → "<<koalb>>"

"1999zzz".succ → "2000aaa"

"ZZZ9999".succ → "AAAA0000"

"***".succ → "**+"

STRING 345

S
tr

in
g

succ! str.succ!→ str

Equivalent to String#succ, but modifies the receiver in place.

sum str.sum(aFixnum=16)→ anInteger

Returns a basic n-bit checksum of the characters in str, where n is the optional parame-
ter, defaulting to 16. The result is simply the sum of the binary value of each character
in str modulo 2n − 1. This is not a particularly good checksum.

swapcase str.swapcase→ aString

Returns a copy of str with uppercase alphabetic characters converted to lowercase and
lowercase characters converted to uppercase.

"Hello".swapcase → "hELLO"

"cYbEr_PuNk11".swapcase → "CyBeR_pUnK11"

swapcase! str.swapcase!→ str or nil

Equivalent to String#swapcase, but modifies the receiver in place, returning str, or
nil if no changes were made.

to_f str.to_f→ aFloat

Returns the result of interpreting leading characters in str as a floating point number.
Extraneous characters past the end of a valid number are ignored. If there is not a valid
number at the start of str, 0.0 is returned. The method never raises an exception.

"123.45e1".to_f → 1234.5

"45.67 degrees".to_f → 45.67

"thx1138".to_f → 0.0

to_i str.to_i→ anInteger

Returns the result of interpreting leading characters in str as a decimal integer. Extrane-
ous characters past the end of a valid number are ignored. If there is not a valid number
at the start of str, 0 is returned. The method never raises an exception.

"12345".to_i → 12345

"99 red balloons".to_i → 99

"0x0a".to_i → 0

"hello".to_i → 0

to_s str.to_s→ str

Returns the receiver.

to_str str.to_str→ str

Synonym for String#to_s. to_str is used by methods such as String#concat to
convert their arguments to a string. Unlike to_s, which is supported by almost all
classes, to_str is normally implemented only by those classes that act like strings. Of
the built-in classes, only Exception and String implement to_str.

tr str.tr(fromString, toString)→ aString

Returns a copy of str with the characters in fromString replaced by the corresponding

S
tr

in
g

346 CHAPTER 22. BUILT-IN CLASSES

characters in toString. If toString is shorter than fromString, it is padded with its last
character. Both strings may use the c1–c2 notation to denote ranges of characters, and
fromString may start with a ^, which denotes all characters except those listed.

"hello".tr(’aeiou’, ’*’) → "h*ll*"

"hello".tr(’^aeiou’, ’*’) → "*e**o"

"hello".tr(’el’, ’ip’) → "hippo"

"hello".tr(’a-y’, ’b-z’) → "ifmmp"

tr! str.tr!(fromString, toString)→ str or nil

Translates str in place, using the same rules as String#tr. Returns str, or nil if no
changes were made.

tr_s str.tr_s(fromString, toString)→ aString

Processes a copy of str as described under String#tr, then removes duplicate charac-
ters in regions that were affected by the translation.

"hello".tr_s(’l’, ’r’) → "hero"

"hello".tr_s(’el’, ’*’) → "h*o"

"hello".tr_s(’el’, ’hx’) → "hhxo"

tr_s! str.tr_s!(fromString, toString)→ str or nil

Performs String#tr_s processing on str in place, returning str, or nil if no changes
were made.

unpack str.unpack(format)→ anArray

Decodes str (which may contain binary data) according to the format string, returning
an array of each value extracted. The format string consists of a sequence of single-
character directives, summarized in Table 22.8 on the facing page. Each directive may
be followed by a number, indicating the number of times to repeat with this directive.
An asterisk (“*”) will use up all remaining elements. The directives sSiIlL may each
be followed by an underscore (“_”) to use the underlying platform’s native size for the
specified type; otherwise, it uses a platform-independent consistent size. Spaces are
ignored in the format string. See also Array#pack on page 261.

"abc \0\0abc \0\0".unpack(’A6Z6’) → ["abc", "abc "]

"abc \0\0".unpack(’a3a3’) → ["abc", " \000\000"]

"aa".unpack(’b8B8’) → ["10000110", "01100001"]

"aaa".unpack(’h2H2c’) → ["16", "61", 97]

"\xfe\xff\xfe\xff".unpack(’sS’) → [-2, 65534]

"now=20is".unpack(’M*’) → ["now is"]

"whole".unpack(’xax2aX2aX1aX2a’) → ["h", "e", "l", "l", "o"]

upcase str.upcase→ aString

Returns a copy of str with all lowercase letters replaced with their uppercase counter-
parts. The operation is locale insensitive—only characters “a” to “z” are affected.

"hEllO".upcase → "HELLO"

upcase! str.upcase!→ str or nil

Upcases the contents of str, returning nil if no changes were made.

STRING 347

S
tr

in
g

Table 22.8. Directives for String#unpack

Format Function Returns

A String with trailing nulls and spaces removed. String
a String. String
B Extract bits from each character (msb first). String
b Extract bits from each character (lsb first). String
C Extract a character as an unsigned integer. Fixnum
c Extract a character as an integer. Fixnum
d Treat sizeof(double) characters as a native double. Float
E Treat sizeof(double) characters as a double in little-endian byte order. Float
e Treat sizeof(float) characters as a float in little-endian byte order. Float
f Treat sizeof(float) characters as a native float. Float
G Treat sizeof(double) characters as a double in network byte order. Float
g Treat sizeof(float) characters as a float in network byte order. Float
H Extract hex nibbles from each character (most significant first). String
h Extract hex nibbles from each character (least significant first). String
I Treat sizeof(int)1 successive characters as an unsigned native integer. Integer
i Treat sizeof(int)1 successive characters as a signed native integer. Integer
L Treat four1 successive characters as an unsigned native long integer. Integer
l Treat four1 successive characters as a signed native long integer. Integer

M Extract a quoted-printable string. String
m Extract a base64 encoded string. String
N Treat four characters as an unsigned long in network byte order. Fixnum
n Treat two characters as an unsigned short in network byte order. Fixnum
P Treat sizeof(char *) characters as a pointer, and return len characters from

the referenced location.
String

p Treat sizeof(char *) characters as a pointer to a null-terminated string. String
S Treat two1 successive characters as an unsigned short in native byte order. Fixnum
s Treat two1 successive characters as a signed short in native byte order. Fixnum
U Extract UTF-8 characters as unsigned integers. Integer
u Extract a UU-encoded string. String
V Treat four characters as an unsigned long in little-endian byte order. Fixnum
v Treat two characters as an unsigned short in little-endian byte order. Fixnum
X Skip backward one character. —
x Skip forward one character. —
Z String with trailing nulls removed. String
@ Skip to the offset given by the length argument. —

1 May be modified by appending “_” to the directive.

S
tr

uc
t

348 CHAPTER 22. BUILT-IN CLASSES

upto str.upto(aString) {| s | block } → str

Iterates through successive values, starting at str and ending at aString inclusive, pass-
ing each value in turn to the block. The String#succmethod is used to generate each
value.

"a8".upto("b6") {|s| print s, ’ ’ }

for s in "a8".."b6"

print s, ’ ’

end

produces:
a8 a9 b0 b1 b2 b3 b4 b5 b6

a8 a9 b0 b1 b2 b3 b4 b5 b6

Class Struct < Object

Subclasses: Struct::Tms

A Struct is a convenient way to bundle a number of attributes together, using accessor
methods, without having to write an explicit class.

The Struct class is a generator of specific classes, each one of which is defined to
hold a set of variables and their accessors. In these examples, we’ll call the generated
class “Customer,” and we’ll show an example instance of that class as “joe.”

In the descriptions that follow, the parameter aSymbol refers to a symbol, which is
either a quoted string or a Symbol (such as :name).

Mixes in

Enumerable:
collect, detect, each_with_index, entries, find, find_all, grep,

include?, map, max, member?, min, reject, select, sort, to_a

Class methods
new Struct.new(〈 aString 〉 〈 , aSym 〉+)→ Customer

Creates a new class, named by aString, containing accessor methods for the given sym-
bols. If the name aString is omitted, an anonymous structure class will be created. Oth-
erwise, the name of this struct will appear as a constant in class Struct, so it must be
unique for all Structs in the system and should start with a capital letter.

Struct.new returns a new Class object, which can then be used to create specific
instances of the new structure. The remaining methods listed below (class and instance)
are defined for this generated class. See the description that follows for an example.

new Customer.new(〈 anObject 〉+)→ joe

Creates a new instance. The number of actual parameters must be less than or equal to
the number of attributes defined for this class; unset parameters default to nil. Passing
too many parameters will raise an ArgumentError.

STRUCT 349

S
tr

uc
t

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.name → "Joe Smith"

joe.zip → 12345

members Customer.members→ anArray

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new("Customer", :name, :address, :zip)

Customer.members → ["name", "address", "zip"]

Instance methods
== joe == anOtherStruct→ true or false

Equality—Returns true if anOtherStruct is equal to this one: they must be of the same
class as generated by Struct.new, and the values of all instance variables must be
equal (according to Object#==).

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joejr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

jane = Customer.new("Jane Doe", "456 Elm, Anytown NC", 12345)

joe == joejr → true

joe == jane → false

[] joe[aSymbol]→ anObject
joe[anInteger]→ anObject

Attribute Reference—Returns the value of the instance variable named by aSymbol, or
indexed (0..length−1) by anInteger. Will raise NameError if the named variable does
not exist, or IndexError if the index is out of range.

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe["name"] → "Joe Smith"

joe[:name] → "Joe Smith"

joe[0] → "Joe Smith"

[]= joe[aSymbol] = anObject→ anObject
joe[anInteger] = anObject→ anObject

Attribute Assignment—Assigns to the instance variable named by aSymbol or anInte-
ger the value anObject and returns it. Will raise a NameError if the named variable
does not exist, or an IndexError if the index is out of range.

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe["name"] = "Luke"

joe[:zip] = "90210"

joe.name → "Luke"

joe.zip → "90210"

S
tr

uc
t

350 CHAPTER 22. BUILT-IN CLASSES

each joe.each {| anObject | block } → joe

Calls block once for each instance variable, passing the value as a parameter.

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.each {|x| puts(x) }

produces:
Joe Smith

123 Maple, Anytown NC

12345

length joe.length→ anInteger

Returns the number of instance variables.
Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.length → 3

members joe.members→ anArray

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.members → ["name", "address", "zip"]

size joe.size→ anInteger

Synonym for Struct#length.

to_a joe.to_a→ anArray

Returns the values for this instance as an array.

Customer = Struct.new("Customer", :name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.to_a[1] → "123 Maple, Anytown NC"

values joe.values→ anArray

Synonym for to_a.

STRUCT::TMS 351

S
ym

bo
l

Class Struct::Tms < Struct

This structure is returned by Process.times. It holds information on process times
on those platforms that support it. Not all values are valid on all platforms.

This structure contains the following instance variables and the corresponding acces-
sors:

utime Amount of User CPU time, in seconds
stime Amount of System CPU time, in seconds
cutime Completed child processes’ User CPU time, in seconds (always 0 on Win-

dows NT)
cstime Completed child processes’ System CPU time, in seconds (always 0 on Win-

dows NT)

See also Struct on page 348 and Process.times on page 396.

t = Process.times

[t.utime, t.stime] → [0.01, 0.01]

[t.cutime, t.cstime] → [0.0, 0.0]

Class Symbol < Object

A Symbol object represents a Ruby name and is generated automatically using the
:name literal syntax. The same Symbol object will be created for a given name string
for the duration of a program’s execution, regardless of the context or meaning of that
name. Thus if Fred is a constant in one context, a method in another, and a class in a
third, the Symbol :Fred will be the same object in all three contexts.

module One

class Fred

end

$f1 = :Fred

end

module Two

Fred = 1

$f2 = :Fred

end

def Fred()

end

$f3 = :Fred

$f1.id → 2469134

$f2.id → 2469134

$f3.id → 2469134

T
hr

ea
d

352 CHAPTER 22. BUILT-IN CLASSES

Instance methods
id2name sym.id2name→ aString

Returns the name corresponding to sym.

:fred.id2name → "fred"

inspect sym.inspect→ aString

Returns the representation of sym as a symbol literal.

:fred.inspect → ":fred"

to_i sym.to_i→ aFixnum

Returns an integer that is unique for each symbol within a particular execution of a
program.

to_s sym.to_s→ aString

Synonym for Symbol#id2name.

Class Thread < Object

Thread encapsulates the behavior of a thread of execution, including the main thread
of the Ruby script. See the tutorial in Chapter 11, beginning on page 105.

In the descriptions that follow, the parameter aSymbol refers to a symbol, which is
either a quoted string or a Symbol (such as :name).

Class methods
abort_on_exception Thread.abort_on_exception→ true or false

Returns the status of the global “abort on exception” condition. The default is false.
When set to true, will cause all threads to abort (the process will exit(0)) if an
exception is raised in any thread. See also Thread.abort_on_exception=.

abort_on_exception= Thread.abort_on_exception= aBoolean→ true or false

When set to true, all threads will abort if an exception is raised. Returns the new state.

Thread.abort_on_exception = true

t1 = Thread.new do

puts "In second thread"

raise "Raise exception"

end

t1.join

print "not reached\n"

produces:
In second thread

prog.rb:4: Raise exception (RuntimeError)

from prog.rb:2:in `initialize’

THREAD 353

T
hr

ea
d

from prog.rb:2:in `new’

from prog.rb:2

critical Thread.critical→ true or false

Returns the status of the global “thread critical” condition.

critical= Thread.critical= aBoolean→ true or false

Sets the status of the global “thread critical” condition and returns it. When set to true,
prohibits scheduling of any existing thread. Does not block new threads from being
created and run. Certain thread operations (such as stopping or killing a thread, sleeping
in the current thread, and raising an exception) may cause a thread to be scheduled even
when in a critical section.

count=0

Thread.new { while true; sleep(1); print "a "; count+=1; end }

while count < 3 do end # no-op wait

Thread.critical = true

puts "no more a’s will come out."

produces:

a a a no more a’s will come out.

current Thread.current→ aThread

Returns the currently executing thread.

Thread.current → #<Thread:0x39efec run>

exit Thread.exit

Terminates the currently running thread and schedules another thread to be run. If this
thread is already marked to be killed, exit returns the Thread. If this is the main
thread, or the last thread, exit the process.

fork Thread.fork { block }→ aThread

Synonym for Thread.new.

kill Thread.kill(aThread)

Causes the given thread to exit (see Thread.exit).

count = 0

a = Thread.new { while true do count += 1 end }

sleep(1) → 1

Thread.kill(a) → #<Thread:0x395000 dead>

count → 1317434

a.alive? → false

list Thread.list→ anArray

Returns an array of Thread objects for all threads that are either runnable or stopped.

T
hr

ea
d

354 CHAPTER 22. BUILT-IN CLASSES

Thread.new { sleep(200) }

Thread.new { 1000000.times {|i| i*i } }

Thread.new { Thread.stop }

l = Thread.list

l → [#<Thread:0x39508c sleep>, #<Thread:0x395154 run>,

#<Thread:0x3951e0 sleep>, #<Thread:0x39efec run>]

main Thread.main→ aThread

Returns the main thread for the process.

Thread.main → #<Thread:0x39efec run>

new Thread.new(〈 arg 〉∗) {| args | block } → aThread

Creates a new thread to execute the instructions given in block, and begins running it.
Any arguments passed to Thread.new are passed into the block.

x = Thread.new { sleep .1; print "x"; print "y"; print "z" }

a = Thread.new { print "a"; print "b"; sleep .2; print "c" }

x.join # Let the threads finish before

a.join # main thread exits...

produces:
abxyzc

pass Thread.pass

Invokes the thread scheduler to pass execution to another thread.

a = Thread.new { print "a"; Thread.pass;

print "b"; Thread.pass;

print "c" }

b = Thread.new { print "x"; Thread.pass;

print "y"; Thread.pass;

print "z" }

a.join

b.join

produces:
axbycz

start Thread.start(〈 args 〉∗) {| args | block } → aThread

Basically the same as Thread.new. However, if class Thread is subclassed, then call-
ing start in that subclass will not invoke the subclass’s initializemethod.

stop Thread.stop

Stops execution of the current thread, putting it into a “sleep” state, and schedules
execution of another thread. Resets the “critical” condition to false.

a = Thread.new { print "a"; Thread.stop; print "c" }

Thread.pass

print "b"

a.run

a.join

produces:

THREAD 355

T
hr

ea
d

abc

Instance methods
[] thr[aSymbol]→ anObject or nil

Attribute Reference—Returns the value of a thread-local variable, using either a symbol
or a string name. If the specified variable does not exist, returns nil.

a = Thread.new { Thread.current["name"] = "A"; Thread.stop }

b = Thread.new { Thread.current[:name] = "B"; Thread.stop }

c = Thread.new { Thread.current["name"] = "C"; Thread.stop }

Thread.list.each {|x| print x.inspect, x[:name], "\n" }

produces:
#<Thread:0x394e20 sleep>C

#<Thread:0x394ec0 sleep>B

#<Thread:0x394f74 sleep>A

#<Thread:0x39efec run>nil

[]= thr[aSymbol] = anObject→ anObject

Attribute Assignment—Sets or creates the value of a thread-local variable, using either
a symbol or a string. See also Thread#[].

abort_on_exception thr.abort_on_exception→ true or false

Returns the status of the “abort on exception” condition for thr. The default is false.
See also Thread.abort_on_exception=.

abort_on_exception= thr.abort_on_exception= true or false→ true or false

When set to true, causes all threads (including the main program) to abort if an excep-
tion is raised in thr. The process will effectively exit(0).

alive? thr.alive?→ true or false

Returns true if thr is running or sleeping.

Thread.current.alive? → true

exit thr.exit→ thr or nil

Terminates thr and schedules another thread to be run. If this thread is already marked
to be killed, exit returns the Thread. If this is the main thread, or the last thread, exits
the process.

join thr.join→ thr

The calling thread will suspend execution and run thr. Does not return until thr exits.
Any threads not joined will be killed when the main program exits.

a = Thread.new { print "a"; sleep(10); print "b"; print "c" }

x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }

x.join # Let x thread finish, a will be killed on exit.

produces:
axyz

T
hr

ea
d

356 CHAPTER 22. BUILT-IN CLASSES

key? thr.key?(aSymbol)→ true or false

Returns true if the given string (or symbol) exists as a thread-local variable.

me = Thread.current

me[:oliver] = "a"

me.key?(:oliver) → true

me.key?(:stanley) → false

kill thr.kill

Synonym for Thread#exit.

priority thr.priority→ anInteger

Returns the priority of thr. Default is zero; higher-priority threads will run before lower-
priority threads.

Thread.current.priority → 0

priority= thr.priority= anInteger→ thr

Sets the priority of thr to anInteger. Higher-priority threads will run before lower-
priority threads.

count1 = count2 = 0

a = Thread.new do

loop { count1 += 1 }

end

a.priority = -1

b = Thread.new do

loop { count2 += 1 }

end

b.priority = -2

sleep 1 → 1

Thread.critical = 1

count1 → 939691

count2 → 9187

raise thr.raise(anException)

Raises an exception (see Kernel.raise on page 384 for details) from thr. The caller
does not have to be thr.

Thread.abort_on_exception = true

a = Thread.new { sleep(200) }

a.raise("Gotcha")

produces:
prog.rb:3: Gotcha (RuntimeError)

from prog.rb:2:in `initialize’

from prog.rb:2:in `new’

from prog.rb:2

run thr.run→ thr

Wakes up thr, making it eligible for scheduling. If not in a critical section, then invokes
the scheduler.

THREAD 357

T
hr

ea
d

a = Thread.new { puts "a"; Thread.stop; puts "c" }

Thread.pass

puts "Got here"

a.run

a.join

produces:
a

Got here

c

safe_level thr.safe_level→ anInteger

Returns the safe level in effect for thr.

Thread.current.safe_level → 0

status thr.status→ aString, false or nil

Returns the status of thr: “sleep” if thr is sleeping or waiting on I/O, “run” if thr is
executing, false if thr terminated normally, and nil if thr terminated with an excep-
tion.
a = Thread.new { raise("die now") }

b = Thread.new { Thread.stop }

c = Thread.new { Thread.exit }

a.status → nil

b.status → "sleep"

c.status → false

Thread.current.status → "run"

stop? thr.stop?→ true or false

Returns true if thr is dead or sleeping.

a = Thread.new { Thread.stop }

b = Thread.current

a.stop? → true

b.stop? → false

value thr.value→ anObject

Waits for thr to complete (via Thread#join) and returns its value.

a = Thread.new { 2+2 }

a.value → 4

wakeup thr.wakeup→ thr

Marks thr as eligible for scheduling (it may still remain blocked on I/O, however). Does
not invoke the scheduler (see Thread#run).

c = Thread.new { Thread.stop; puts "hey!" }

c.wakeup

produces:
hey!

T
hr

ea
dG

ro
up

358 CHAPTER 22. BUILT-IN CLASSES

Class ThreadGroup < Object

ThreadGroup provides a means of keeping track of a number of threads as a group.
A Thread can belong to only one ThreadGroup at a time; adding a thread to a new
group will remove it from any previous group.

Newly created threads belong to the same group as the thread from which they were
created.

ThreadGroup constants

Default Default thread group.

Class methods
new ThreadGroup.new→ thgrp

Returns a newly created ThreadGroup. The group is initially empty.

Instance methods
add thgrp.add(aThread)→ thgrp

Adds the given thread to this group, removing it from any other group to which it may
have previously belonged.

puts "Initial group is #{ThreadGroup::Default.list}"

tg = ThreadGroup.new

t1 = Thread.new { sleep 10 }

t2 = Thread.new { sleep 10 }

puts "t1 is #{t1}"

puts "t2 is #{t2}"

tg.add(t1)

puts "Initial group now #{ThreadGroup::Default.list}"

puts "tg group now #{tg.list}"

produces:
Initial group is #<Thread:0x39efec>

t1 is #<Thread:0x394ee8>

t2 is #<Thread:0x394e5c>

Initial group now #<Thread:0x394e5c>#<Thread:0x39efec>

tg group now #<Thread:0x394ee8>

list thgrp.list→ anArray

Returns an array of all existing Thread objects that belong to this group.

ThreadGroup::Default.list → [#<Thread:0x39efec run>]

TIME 359

T
im

e

Class Time < Object

Time is an abstraction of dates and times. Time is stored internally as the number of
seconds and microseconds since the epoch, January 1, 1970 00:00 UTC. Also see the
library modules Date and ParseDate, documented beginning on pages 401 and 413,
respectively.

The Time class treats GMT (Greenwich Mean Time) and UTC (Coordinated Universal
Time)2 as equivalent. GMT is the older way of referring to these baseline times but
persists in the names of calls on Posix systems.

All times are stored with some number of microseconds. Be aware of this fact when
comparing times with each other—times that are apparently equal when displayed may
be different when compared.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Class methods
at Time.at(aTime)→ aTime

Time.at(seconds 〈 , microseconds 〉)→ aTime

Creates a new time object with the value given by aTime, or the given number of sec-
onds (and optional microseconds) from epoch.

Time.at(0) → Thu Jan 01 03:00:00 MSK 1970

Time.at(946702800) → Sat Jan 01 08:00:00 MSK 2000

gm Time.gm(year 〈 , month, day, hour, min, sec, usec 〉)→ aTime
Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz)→ aTime

Creates a time based on given values, interpreted as UTC (GMT). The year must be
specified. Other values default to the minimum value for that field (and may be nil

or omitted). Months may be specified by numbers from 1 to 12, or by the three-
letter English month names. Hours are specified on a 24-hour clock (0..23). Raises
an ArgumentError if any values are out of range. Will also accept ten arguments in
the order output by Time#to_a.

Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

local Time.local(year 〈 , month, day, hour, min, sec, usec 〉)→ aTime
Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz)→ aTime

Same as Time.gm, but interprets the values in the local time zone.

Time.local(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 MSK 2000

2. Yes, UTC really does stand for Coordinated Universal Time. There was a committee involved.

T
im

e

360 CHAPTER 22. BUILT-IN CLASSES

mktime Time.mktime(year, month, day, hour, min, sec, usec)→ aTime

Synonym for Time.local.

new Time.new→ aTime

Returns a Time object initialized to the current system time. Note: The object created
will be created using the resolution available on your system clock, and so may include
fractional seconds.
a = Time.new → Thu Dec 26 20:05:27 MSK 2002

b = Time.new → Thu Dec 26 20:05:27 MSK 2002

a == b → false

"%.6f" % a.to_f → "1040922327.539099"

"%.6f" % b.to_f → "1040922327.539472"

now Time.now→ aTime

Synonym for Time.new.

utc Time.utc(year 〈 , month, day, hour, min, sec, usec 〉)→ aTime
Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz)→ aTime

Synonym for Time.gm.

Time.utc(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

Instance methods
+ time + aNumeric→ aTime

Addition—Adds some number of seconds (possibly fractional) to time and returns that
value as a new time.
t = Time.now → Thu Dec 26 20:05:27 MSK 2002

t + (60 * 60 * 24) → Fri Dec 27 20:05:27 MSK 2002

– time - aTime→ aFloat
time - aNumeric→ aTime

Difference—Returns a new time that represents the difference between two times, or
subtracts the given number of seconds in aNumeric from time.

t = Time.now → Thu Dec 26 20:05:27 MSK 2002

t2 = t + 2592000 → Sat Jan 25 20:05:27 MSK 2003

t2 - t → 2592000.0

t2 - 2592000 → Thu Dec 26 20:05:27 MSK 2002

<=> time <=> anOtherTime→−1, 0, +1

time <=> aNumeric→−1, 0, +1

Comparison—Compares time with anOtherTime or with aNumeric, which is the num-
ber of seconds (possibly fractional) since epoch.

t = Time.now → Thu Dec 26 20:05:27 MSK 2002

t2 = t + 2592000 → Sat Jan 25 20:05:27 MSK 2003

t <=> t2 → -1

t2 <=> t → 1

t <=> t → 0

TIME 361

T
im

e

asctime time.asctime→ aString

Returns a canonical string representation of time.

Time.now.asctime → "Thu Dec 26 20:05:27 2002"

ctime time.ctime→ aString

Synonym for Time#asctime.

day time.day→ aFixnum

Returns the day of the month (1..n) for time.

t = Time.now → Thu Dec 26 20:05:27 MSK 2002

t.day → 26

gmt? time.gmt?→ true or false

Returns true if time represents a time in UTC (GMT).

t = Time.now → Thu Dec 26 20:05:27 MSK 2002

t.gmt? → false

t = Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

t.gmt? → true

gmtime time.gmtime→ time

Converts time to UTC (GMT), modifying the receiver.

t = Time.now → Thu Dec 26 20:05:27 MSK 2002

t.gmt? → false

t.gmtime → Thu Dec 26 17:05:27 UTC 2002

t.gmt? → true

hour time.hour→ aFixnum

Returns the hour of the day (0..23) for time.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.hour → 20

isdst time.isdst→ true or false

Returns true if time occurs during Daylight Saving Time in its time zone.

t = Time.local(2000, 7, 1) → Sat Jul 01 00:00:00 MSD 2000

t.isdst → true

t2 = Time.local(2000, 1, 1) → Sat Jan 01 00:00:00 MSK 2000

t2.isdst → false

localtime time.localtime→ time

Converts time to local time (using the local time zone in effect for this process) modi-
fying the receiver.

t = Time.gm(2000, "jan", 1, 20, 15, 1)

t.gmt? → true

t.localtime → Sat Jan 01 23:15:01 MSK 2000

t.gmt? → false

T
im

e

362 CHAPTER 22. BUILT-IN CLASSES

mday time.mday→ aFixnum

Synonym for Time#day.

min time.min→ aFixnum

Returns the minute of the hour (0..59) for time.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.min → 5

mon time.mon→ aFixnum

Returns the month of the year (1..12) for time.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.mon → 12

month time.month→ aFixnum

Synonym for Time#mon.

sec time.sec→ aFixnum

Returns the second of the minute (0..60)3 for time.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.sec → 28

strftime time.strftime(aString)→ aString

Formats time according to the directives in the given format string. See Table 22.9 on
the facing page for the available values. Any text not listed as a directive will be passed
through to the output string.

t = Time.now

t.strftime("Printed on %m/%d/%Y") → "Printed on 12/26/2002"

t.strftime("at %I:%M%p") → "at 08:05PM"

to_a time.to_a→ anArray

Returns a ten-element anArray of values for time: [sec, min, hour, day, month,

year, wday, yday, isdst, zone]. See the individual methods for an explanation of
the valid ranges of each value. The ten elements can be passed directly to Time.utc or
Time.local to create a new Time.
now = Time.now → Thu Dec 26 20:05:28 MSK 2002

t = now.to_a → [28, 5, 20, 26, 12, 2002, 4, 360, false, "MSK"]

to_f time.to_f→ aFloat

Returns the value of time as a floating point number of seconds since epoch.

t = Time.now

"%10.5f" % t.to_f → "1040922328.51660"

t.to_i → 1040922328

3. Yes, seconds really can range from zero to 60. This allows the system to inject leap seconds every now
and then to correct for the fact that years are not really a convenient number of hours long.

TIME 363

T
im

e

Table 22.9. Time#strftime directives
Format Meaning

%a The abbreviated weekday name (“Sun”)
%A The full weekday name (“Sunday”)
%b The abbreviated month name (“Jan”)
%B The full month name (“January”)
%c The preferred local date and time representation
%d Day of the month (01..31)
%H Hour of the day, 24-hour clock (00..23)
%I Hour of the day, 12-hour clock (01..12)
%j Day of the year (001..366)
%m Month of the year (01..12)
%M Minute of the hour (00..59)
%p Meridian indicator (“AM” or “PM”)
%S Second of the minute (00..60)
%U Week number of the current year, starting with the first Sunday as the first

day of the first week (00..53)
%W Week number of the current year, starting with the first Monday as the first

day of the first week (00..53)
%w Day of the week (Sunday is 0, 0..6)
%x Preferred representation for the date alone, no time
%X Preferred representation for the time alone, no date
%y Year without a century (00..99)
%Y Year with century
%Z Time zone name
%% Literal “%” character

to_i time.to_i→ anInteger

Returns the value of time as an integer number of seconds since epoch.

t = Time.now

"%10.5f" % t.to_f → "1040922328.56901"

t.to_i → 1040922328

to_s time.to_s→ aString

Returns a string representing time. Equivalent to calling Time#strftimewith a format
string of “%a %b %d %H:%M:%S %Z %Y”.

Time.now.to_s → "Thu Dec 26 20:05:28 MSK 2002"

tv_sec time.tv_sec→ anInteger

Synonym for Time#to_i.

tv_usec time.tv_usec→ anInteger

Synonym for Time#usec.

T
im

e

364 CHAPTER 22. BUILT-IN CLASSES

usec time.usec→ anInteger

Returns just the number of microseconds for time.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

"%10.6f" % t.to_f → "1040922328.684655"

t.usec → 684655

utc time.utc→ time

Synonym for Time#gmtime.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.utc? → false

t.utc → Thu Dec 26 17:05:28 UTC 2002

t.utc? → true

utc? time.utc?→ true or false

Returns true if time represents a time in UTC (GMT).

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.utc? → false

t = Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

t.utc? → true

wday time.wday→ aFixnum

Returns an integer representing the day of the week, 0..6, with Sunday == 0.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.wday → 4

yday time.yday→ aFixnum

Returns an integer representing the day of the year, 1..366.

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.yday → 360

year time.year→ aFixnum

Returns the year for time (including the century).

t = Time.now → Thu Dec 26 20:05:28 MSK 2002

t.year → 2002

zone time.zone→ aString

Returns the name of the time zone used for time.
t = Time.gm(2000, "jan", 1, 20, 15, 1)

t.zone → "UTC"

t = Time.local(2000, "jan", 1, 20, 15, 1)

t.zone → "MSK"

TRUECLASS 365

T
ru

eC
la

ss

Class TrueClass < Object

The global value true is the only instance of class TrueClass and represents a logi-
cally true value in boolean expressions. The class provides operators allowing true to
be used in logical expressions.

Instance methods
& true & anObject→ anObject

And—Returns false if anObject is nil or false, true otherwise.

^ true ^ anObject→ !anObject

Exclusive Or—Returns true if anObject is nil or false, false otherwise.

| true | anObject→ true

Or—Returns true. As anObject is an argument to a method call, it is always evaluated;
there is no short-circuit evaluation in this case.

true | puts("or")

true || puts("logical or")

produces:
or

Chapter 23

Built-in Modules

This chapter lists the modules built in to the Ruby system.

Alphabetical Listing
Comparable (page 368): Instance: Comparisons, between?.

Enumerable (page 369): Instance: collect, detect, each_with_index, entries, find, find_all, grep,
include?, map, max, member?, min, reject, select, sort, to_a.

Errno (page 372)

FileTest (page 372): Instance: blockdev?, chardev?, directory?, executable?, executable_real?,
exist?, exists?, file?, grpowned?, owned?, pipe?, readable?, readable_real?, setgid?, setuid?,
size, size?, socket?, sticky?, symlink?, writable?, writable_real?, zero?.

GC (page 375): Class: disable, enable, start. Instance: garbage_collect.

Kernel (page 375): Class: Array, Float, Integer, String, ` (backquote), abort, at_exit, autoload,
binding, block_given?, callcc, caller, catch, chomp, chomp!, chop, chop!, eval, exec, exit, exit!, fail,
fork, format, gets, global_variables, gsub, gsub!, iterator?, lambda, load, local_variables, loop,
open, p, print, printf, proc, putc, puts, raise, rand, readline, readlines, require, scan, select,
set_trace_func, singleton_method_added, sleep, split, sprintf, srand, sub, sub!, syscall, system,
test, throw, trace_var, trap, untrace_var.

Marshal (page 391): Class: dump, load, restore.

Math (page 392): Class: atan2, cos, exp, frexp, ldexp, log, log10, sin, sqrt, tan.

ObjectSpace (page 393): Class: _id2ref, define_finalizer, each_object, garbage_collect,
undefine_finalizer.

Process (page 394): Class: egid, egid=, euid, euid=, exit!, fork, getpgid, getpgrp, getpriority, gid,
gid=, kill, pid, ppid, setpgid, setpgrp, setpriority, setsid, times, uid, uid=, wait, wait2, waitpid,
waitpid2.

367

C
om

pa
ra

bl
e

368 CHAPTER 23. BUILT-IN MODULES

Module Comparable
Relies on: <=>

The Comparable mixin is used by classes whose objects may be ordered. The class
must define the <=> operator, which compares the receiver against another object,
returning −1, 0, or +1 depending on whether the receiver is less than, equal to, or
greater than the other object. Comparable uses <=> to implement the conventional
comparison operators (<, <=, ==, >=, and >) and the method between?.

class SizeMatters

include Comparable

attr :str

def <=>(anOther)

str.size <=> anOther.str.size

end

def initialize(str)

@str = str

end

def inspect

@str

end

end

s1 = SizeMatters.new("Z")

s2 = SizeMatters.new("YY")

s3 = SizeMatters.new("XXX")

s4 = SizeMatters.new("WWWW")

s5 = SizeMatters.new("VVVVV")

s1 < s2 → true

s4.between?(s1, s3) → false

s4.between?(s3, s5) → true

[s3, s2, s5, s4, s1].sort → [Z, YY, XXX, WWWW, VVVVV]

Instance methods
Comparisons anObject < otherObject→ true or false

anObject <= otherObject→ true or false
anObject == otherObject→ true or false
anObject >= otherObject→ true or false

anObject > otherObject→ true or false

Compares two objects based on the receiver’s <=> method.

between? anObject.between?(min, max)→ true or false

Returns false if anObject <=> min is less than zero or if anObject <=> max is greater
than zero, true otherwise.

3.between?(1, 5) → true

6.between?(1, 5) → false

’cat’.between?(’ant’, ’dog’) → true

’gnu’.between?(’ant’, ’dog’) → false

ENUMERABLE 369

E
nu

m
er

ab
le

Module Enumerable
Relies on: each, <=>

The Enumerablemixin provides collection classes with several traversal and searching
methods, and with the ability to sort. The class must provide a method each, which
yields successive members of the collection. If Enumerable#max, #min, or #sort is
used, the objects in the collection must also implement a meaningful <=> operator, as
these methods rely on an ordering between members of the collection.

Instance methods
collect enumObj.collect {| obj | block } → anArray

Returns a new array with the results of running block once for every element in enum-
Obj.

(1..4).collect {|i| i*i } → [1, 4, 9, 16]

(1..4).collect { "cat" } → ["cat", "cat", "cat", "cat"]

detect enumObj.detect {| obj | block } → anObject or nil

Passes each entry in enumObj to block. Returns the first for which block is not false.
Returns nil if no object matches.

(1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } → nil

(1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } → 35

each_with_index enumObj.each_with_index {| obj, i | block } → nil

Calls block with two arguments, the item and its index, for each item in enumObj.

hash = Hash.new

%w(cat dog wombat).each_with_index {|item, index|

hash[item] = index

}

hash → {"cat"=>0, "wombat"=>2, "dog"=>1}

entries enumObj.entries→ anArray

Synonym for Enumerable#to_a.

find enumObj.find {| obj | block } → anObject or nil

Synonym for Enumerable#detect.

find_all enumObj.find_all {| obj | block } → anArray

Returns an array containing all elements of enumObj for which block is not false (see
also Enumerable#reject).

(1..10).find_all {|i| i % 3 == 0 } → [3, 6, 9]

grep enumObj.grep(pattern)→ anArray
enumObj.grep(pattern) {| obj | block } → anArray

Returns an array of every element in enumObj for which Pattern === element. If

E
nu

m
er

ab
le

370 CHAPTER 23. BUILT-IN MODULES

the optional block is supplied, each matching element is passed to it, and the block’s
result is stored in the output array.

(1..100).grep 38..44 → [38, 39, 40, 41, 42, 43, 44]

c = IO.constants

c.grep(/SEEK/) → ["SEEK_CUR", "SEEK_END", "SEEK_SET"]

res = c.grep(/SEEK/) {|v| IO.const_get(v) }

res → [1, 2, 0]

include? enumObj.include?(anObject)→ true or false

Returns true if any member of enumObj equals anObject. Equality is tested using ==.

IO.constants.include? "SEEK_SET" → true

IO.constants.include? "SEEK_NO_FURTHER" → false

map enumObj.map {| obj | block } → anArray

Synonym for Enumerable#collect.

max enumObj.max→ anObject
enumObj.max {| a,b | block } → anObject

Returns the object in enumObj with the maximum value. The first form assumes all
objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)

a.max → "horse"

a.max {|a,b| a.length <=> b.length } → "albatross"

member? enumObj.member?(anObject)→ true or false

Synonym for Enumerable#include?.

min enumObj.min→ anObject
enumObj.min {| a,b | block } → anObject

Returns the object in enumObj with the minimum value. The first form assumes all
objects implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)

a.min → "albatross"

a.min {|a,b| a.length <=> b.length } → "dog"

reject enumObj.reject {| obj | block } → anArray

Returns an array for all elements of enumObj for which block is false (see also Enu-

merable#find_all).

(1..10).reject {|i| i % 3 == 0 } → [1, 2, 4, 5, 7, 8, 10]

select enumObj.select {| obj | block } → anArray

Synonym for Enumerable#find_all.

ENUMERABLE 371

E
nu

m
er

ab
le

sort enumObj.sort→ anArray
enumObj.sort {| a, b | block } → anArray

Returns an array containing the items in enumObj sorted, either according to their own
<=> method, or by using the results of the supplied block. The block should return−1,
0, or +1 depending on the comparison between a and b.

%w(rhea kea flea).sort → ["flea", "kea", "rhea"]

(1..10).sort {|a,b| b <=> a} → [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

The following code sorts some files on modification time.

files = Dir["*"]

sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime}

sorted → ["mon", "tues", "wed", "thurs"]

This sort is inefficient: it generates two new File objects during every comparison. A
slightly better technique is to use the Kernel#test method to generate the modifica-
tion times directly.

files = Dir["*"]

sorted = files.sort { |a,b|

test(?M, a) <=> test(?M, b)

}

sorted → ["mon", "tues", "wed", "thurs"]

This still generates many unnecessary Time objects. A more efficient technique is to
cache the sort keys (modification times in this case) before the sort. Perl users often
call this approach a Schwartzian Transform, after Randal Schwartz. We construct a
temporary array, where each element is an array containing our sort key along with the
filename. We sort this array, and then extract the filename from the result.

sorted = Dir["*"].collect { |f|

[test(?M, f), f]

}.sort.collect { |f| f[1] }

sorted → ["mon", "tues", "wed", "thurs"]

to_a enumObj.to_a→ anArray

Returns an array containing the items in enumObj.

(1..7).to_a → [1, 2, 3, 4, 5, 6, 7]

{ ’a’=>1, ’b’=>2, ’c’=>3 }.to_a → [["a", 1], ["b", 2], ["c", 3]]

F
ile

Te
st

372 CHAPTER 23. BUILT-IN MODULES

Module Errno
Ruby exception objects are subclasses of Exception. However, operating systems typ-
ically report errors using plain integers. Module Errno is created dynamically to map
these operating system errors to Ruby classes, with each error number generating its
own subclass of SystemCallError. As the subclass is created in module Errno, its
name will start Errno::.

Exception

StandardError

SystemCallError

Errno::xxx

The names of the Errno:: classes depend on the environment in which Ruby runs. On
a typical Unix or Windows platform, there are Errno classes such as Errno::EACCES,
Errno::EAGAIN, Errno::EINTR, and so on.

The integer operating system error number corresponding to a particular error is avail-
able as the class constant Errno::error::Errno.
Errno::EACCES::Errno → 13

Errno::EAGAIN::Errno → 11

Errno::EINTR::Errno → 4

The full list of operating system errors on your particular platform are available as the
constants of Errno.
Errno.constants → E2BIG, EACCES, EADDRINUSE, EADDRNOTAVAIL,

EADV, EAFNOSUPPORT, EAGAIN, ...

Module FileTest
FileTest implements file test operations similar to those used in File::Stat.

Instance methods
blockdev? FileTest.blockdev?(aString)→ true or false

Returns true if the named file is a block device, false if it isn’t or if the operating
system doesn’t support this feature.

FileTest.blockdev?("testfile") → false

chardev? FileTest.chardev?(aString)→ true or false

Returns true if the named file is a character device, false if it isn’t or if the operating
system doesn’t support this feature.

FileTest.chardev?("/dev/tty") → true

directory? FileTest.directory?(aString)→ true or false

Returns true if this named file is a directory, false otherwise.

FILETEST 373

F
ile

Te
st

FileTest.directory?(".") → true

executable? FileTest.executable?(aString)→ true or false

Returns true if the named file is executable. The tests are made using the effective
owner of the process.

FileTest.executable?("testfile") → false

executable_real? FileTest.executable_real?(aString)→ true or false

Same as FileTest#executable?, but tests using the real owner of the process.

exist? FileTest.exist? (aString)→ true or false

Returns true if the named file exists.

FileTest.exist?("testfile") → true

exists? FileTest.exists? (aString)→ true or false

Synonym for FileTest.exist?.

file? FileTest.file?(aString)→ true or false

Returns true if the named file is a regular file (not a device file, pipe, socket, etc.).

FileTest.file?("testfile") → true

grpowned? FileTest.grpowned?(aString)→ true or false

Returns true if the effective group id of the process is the same as the group id of the
named file. On Windows NT, returns false.

FileTest.grpowned?("/etc/passwd") → false

owned? FileTest.owned?(aString)→ true or false

Returns true if the effective user id of the process is the same as the owner of the
named file.

FileTest.owned?("/etc/passwd") → false

pipe? FileTest.pipe?(aString)→ true or false

Returns true if the operating system supports pipes and the named file is a pipe, false
otherwise.

FileTest.pipe?("testfile") → false

readable? FileTest.readable?(aString)→ true or false

Returns true if the named file is readable by the effective user id of this process.

FileTest.readable?("testfile") → true

readable_real? FileTest.readable_real?(aString)→ true or false

Returns true if the named file is readable by the real user id of this process.

F
ile

Te
st

374 CHAPTER 23. BUILT-IN MODULES

FileTest.readable_real?("testfile") → true

setgid? FileTest.setgid?(aString)→ true or false

Returns true if the named file’s set-group-id permission bit is set, and false if it isn’t
or if the operating system doesn’t support this feature.

FileTest.setgid?("/usr/sbin/lpc") → false

setuid? FileTest.setuid?(aString)→ true or false

Returns true if the named file’s set-user-id permission bit is set, and false if it isn’t
or if the operating system doesn’t support this feature.

FileTest.setuid?("/bin/su") → true

size FileTest.size(aString)→ anInteger

Returns the size of the named file in bytes.

FileTest.size("testfile") → 66

size? FileTest.size?(aString)→ aFixnum or nil

Returns nil if the named file is of zero length; otherwise, returns a nonzero aFixnum.

FileTest.size?("testfile") → 66

FileTest.size?("/dev/zero") → nil

socket? FileTest.socket?(aString)→ true or false

Returns true if the named file is a socket, false if it isn’t or if the operating system
doesn’t support this feature.

sticky? FileTest.sticky?(aString)→ true or false

Returns true if the named file has its sticky bit set, false if it doesn’t or if the operat-
ing system doesn’t support this feature.

symlink? FileTest.symlink?(aString)→ true or false

Returns true if the named file is a symbolic link, false if it isn’t or if the operating
system doesn’t support this feature.

writable? FileTest.writable?(aString)→ true or false

Returns true if the named file is writable by the effective user id of this process.

writable_real? FileTest.writable_real?(aString)→ true or false

Returns true if the named file is writable by the real user id of this process.

zero? FileTest.zero?(aString)→ true or false

Returns true if the named file is of zero length, false otherwise.

GC 375

K
er

ne
l

Module GC
The GC module provides an interface to Ruby’s mark and sweep garbage collection
mechanism. Some of the underlying methods are also available via the ObjectSpace
module, described beginning on page 393.

Module methods
disable GC.disable→ true or false

Disables garbage collection, returning true if garbage collection was already disabled.

GC.disable → false

GC.disable → true

enable GC.enable→ true or false

Enables garbage collection, returning true if garbage collection was disabled.

GC.disable → false

GC.enable → true

GC.enable → false

start GC.start→ nil

Initiates garbage collection, unless manually disabled.

GC.start → nil

Instance methods
garbage_collect garbage_collect→ nil

Equivalent to GC.start.

include GC

garbage_collect → nil

Module Kernel
The Kernel module is included by class Object, so its methods are available in every
Ruby object. The Kernel instance methods are documented in class Object beginning
on page 321. This section documents the module methods. These methods are called
without a receiver and thus can be called in functional form.

Module methods
Array Array(arg)→ anArray

Returns arg.to_a.

Array(1..5) → [1, 2, 3, 4, 5]

K
er

ne
l

376 CHAPTER 23. BUILT-IN MODULES

Float Float(arg)→ aFloat

Returns arg converted to a float. Numeric types are converted directly, nil is converted
to 0.0, and the rest are converted using arg.to_f.

Float(1) → 1.0\nprog.rb:2:in `Float’: cannot convert nil into

Float (TypeError)\n from prog.rb:2

Float(nil)

Float("123.456")

Integer Integer(arg)→ anInteger

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (with float-
ing point numbers being truncated). If arg is a String, leading radix indicators (0, 0b,
and 0x) are honored. This behavior is different from that of String#to_i.

Integer(123.999) → 123

Integer("0x1a") → 26

Integer(Time.new) → 1040922331

String String(arg)→ aString

Converts arg to a String by calling its to_s method.

String(self) → "main"

String(self.class) → "Object"

String(123456) → "123456"

` (backquote) `cmd `→ aString

Returns the standard output of running cmd in a subshell. The built-in syntax %x{...}
described on page 68 uses this method.

`date` → "Thu Dec 26 20:05:31 MSK 2002\n"

`ls testdir`.split[1] → "main.rb"

abort abort

Terminate execution immediately, effectively by calling Kernel.exit(1).

at_exit at_exit { block }→ aProc

Converts block to a Proc object (and therefore binds it at the point of call) and registers
it for execution when the program exits. If multiple handlers are registered, they are
executed in reverse order of registration.

def do_at_exit(str1)

at_exit { print str1 }

end

at_exit { puts "cruel world" }

do_at_exit("goodbye ")

exit

produces:

goodbye cruel world

KERNEL 377

K
er

ne
l

autoload autoload(aModule, aFile)→ nil

Registers aFile to be loaded (using Kernel.require) the first time that aModule
(which may be a String or a symbol) is accessed.

autoload :MyModule, "/usr/local/lib/modules/my_module.rb"

binding binding→ aBinding

Returns a Binding object, describing the variable and method bindings at the point of
call. This object can be used when calling eval to execute the evaluated command in
this environment. Also see the description of Binding beginning on page 266.

def getBinding(param)

return binding

end

b = getBinding("hello")

eval "param", b → "hello"

block_given? block_given?→ true or false

Returns true if yield would execute a block in the current context.

def try

if block_given?

yield

else

"no block"

end

end

try → "no block"

try { "hello" } → "hello"

try do

"hello"

end

callcc callcc {| cont | block } → anObject

Generates a Continuation object, which it passes to the associated block. Perform-
ing a cont.call will cause the callcc to return (as will falling through the end of
the block). The value returned by the callcc is the value of the block, or the value
passed to cont.call. See Continuation on page 268 for more details. Also see
Kernel.throw for an alternative mechanism for unwinding a call stack.

caller caller(〈 anInteger 〉)→ anArray

Returns the current execution stack—an array containing strings in the form “file:line”
or “file:line: in ‘method’ ”. The optional anInteger parameter determines the number of
initial stack entries to omit from the result.

K
er

ne
l

378 CHAPTER 23. BUILT-IN MODULES

def a(skip)

caller(skip)

end

def b(skip)

a(skip)

end

def c(skip)

b(skip)

end

c(0) → ["prog:2:in `a’", "prog:5:in `b’", "prog:8:in `c’",

"prog:10"]

c(1) → ["prog:5:in `b’", "prog:8:in `c’", "prog:11"]

c(2) → ["prog:8:in `c’", "prog:12"]

c(3) → ["prog:13"]

catch catch(symbol) { block } → anObject

catch executes its block. If a throw is executed, Ruby searches up its stack for a
catch block with a tag corresponding to the throw’s symbol. If found, that block is
terminated, and catch returns the value given to throw. If throw is not called, the
block terminates normally, and the value of catch is the value of the last expression
evaluated. catch expressions may be nested, and the throw call need not be in lexical
scope.

def routine(n)

puts n

throw :done if n <= 0

routine(n-1)

end

catch(:done) { routine(3) }

produces:
3

2

1

0

chomp chomp(〈 aString 〉)→ $_ or aString

Equivalent to $_ = $_.chomp(aString). See String#chomp on page 336.

$_ = "now\n"

chomp → "now"

$_ → "now"

chomp "ow" → "n"

$_ → "n"

chomp "xxx" → "n"

$_ → "n"

chomp! chomp!(〈 aString 〉)→ $_ or nil

Equivalent to $_.chomp!(aString). See String#chomp!

$_ = "now\n"

chomp! → "now"

$_ → "now"

chomp! "x" → nil

$_ → "now"

KERNEL 379

K
er

ne
l

chop chop→ aString

Equivalent to ($_.dup).chop!, except nil is never returned. See String#chop! on
page 337.

a = "now\r\n"

$_ = a

chop → "now"

$_ → "now"

chop → "no"

chop → "n"

chop → ""

chop → ""

a → "now\r\n"

chop! chop!→ $_ or nil

Equivalent to $_.chop!.

a = "now\r\n"

$_ = a

chop! → "now"

chop! → "no"

chop! → "n"

chop! → ""

chop! → nil

$_ → ""

a → ""

eval eval(aString 〈 , aBinding 〈 , file 〈 , line 〉 〉 〉)→ anObject

Evaluates the Ruby expression(s) in aString. If aBinding is given, the evaluation is
performed in its context. The binding may be a Binding object or a Proc object. If the
optional file and line parameters are present, they will be used when reporting syntax
errors.

def getBinding(str)

return binding

end

str = "hello"

eval "str + ’ Fred’" → "hello Fred"

eval "str + ’ Fred’", getBinding("bye") → "bye Fred"

exec exec(command 〈 , args 〉)

Replaces the current process by running the given external command. If exec is given
a single argument, that argument is taken as a line that is subject to shell expansion
before being executed. If multiple arguments are given, the second and subsequent
arguments are passed as parameters to command with no shell expansion. If the first
argument is a two-element array, the first element is the command to be executed, and
the second argument is used as the argv[0] value, which may show up in process
listings. In MSDOS environments, the command is executed in a subshell; otherwise,
one of the exec(2) system calls is used, so the running command may inherit some of
the environment of the original program (including open file descriptors).

exec "echo *" # echoes list of files in current directory

K
er

ne
l

380 CHAPTER 23. BUILT-IN MODULES

never get here

exec "echo", "*" # echoes an asterisk

never get here

exit exit(anInteger=0)

Initiates the termination of the Ruby script by raising the SystemExit exception. This
exception may be caught. The optional parameter is used to return a status code to the
invoking environment.

begin

exit

puts "never get here"

rescue SystemExit

puts "rescued a SystemExit exception"

end

puts "after begin block"

produces:
rescued a SystemExit exception

after begin block

Just prior to termination, Ruby executes any at_exit functions and runs any object
finalizers (see ObjectSpace beginning on page 393).

at_exit { puts "at_exit function" }

ObjectSpace.define_finalizer(self, proc { puts "in finalizer" })

exit

produces:
at_exit function

exit! exit!(anInteger=-1)

Similar to Kernel.exit, but exception handling, at_exit functions, and finalizers
are bypassed.

fail fail
fail(aString)

fail(anException 〈 , aString 〈 , anArray 〉 〉)

Synonym for Kernel.raise.

fork fork 〈 { block } 〉 → aFixnum or nil

Creates a subshell. If a block is specified, that block is run in the subshell, and the sub-
shell terminates with a status of zero. Otherwise, the fork call returns twice, once in
the parent, returning the process id of the child, and once in the child, returning nil.
The child process can exit using Kernel.exit! to avoid running any at_exit func-
tions. The parent process should use Process.wait to collect the termination statuses
of its children; otherwise, the operating system may accumulate zombie processes.

fork do

3.times {|i| puts "Child: #{i}" }

end

3.times {|i| puts "Parent: #{i}" }

Process.wait

KERNEL 381

K
er

ne
l

produces:

Parent: 0

Child: 0

Parent: 1

Child: 1

Child: 2

Parent: 2

format format(aString 〈 , anObject 〉∗)→ aString

Synonym for Kernel.sprintf.

gets gets(aString=$/)→ aString or nil

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*), or from
standard input if no files are present on the command line. Returns nil at end of file.
The optional argument specifies the record separator. The separator is included with the
contents of each record. A separator of nil reads the entire contents, and a zero-length
separator reads the input one paragraph at a time, where paragraphs are divided by two
consecutive newlines. If multiple filenames are present in ARGV, gets(nil) will read
the contents one file at a time.

ARGV << "testfile"

print while gets

produces:

This is line one

This is line two

This is line three

And so on...

global_variables global_variables→ anArray

Returns an array of the names of global variables.

global_variables.grep /std/ → ["$stdout", "$stdin", "$stderr"]

gsub gsub(pattern, replacement)→ aString
gsub(pattern) { block } → aString

Equivalent to $_.gsub..., except that $_ receives the modified result.

$_ = "quick brown fox"

gsub /[aeiou]/, ’*’ → "q**ck br*wn f*x"

$_ → "q**ck br*wn f*x"

gsub! gsub!(pattern, replacement)→ aString or nil
gsub!(pattern) { block } → aString or nil

Equivalent to Kernel.gsub, except nil is returned if $_ is not modified.

$_ = "quick brown fox"

gsub! /cat/, ’*’ → nil

$_ → "quick brown fox"

K
er

ne
l

382 CHAPTER 23. BUILT-IN MODULES

iterator? iterator?→ true or false

Synonym for Kernel.block_given?. The iterator? method will be removed in
Ruby 1.8.

lambda lambda { block } → aProc

Synonym for Kernel.proc.

load load(aFileName, wrap=false)→ true

Loads and executes the Ruby program in the file aFileName. If the filename does not
resolve to an absolute path, the file is searched for in the library directories listed in
$:. If the optional wrap parameter is true, the loaded script will be executed under
an anonymous module, protecting the calling program’s global namespace. Any local
variables in the loaded file will not be propagated to the loading environment.

local_variables local_variables→ anArray

Returns the names of the current local variables.

fred = 1

for i in 1..10

...

end

local_variables → ["fred", "i"]

loop loop { block }

Repeatedly executes the block.

loop {

print "Input: "

break if !gets or $_ =~ /^[qQ]/

...

}

open open(aString 〈 , aMode 〈 , perm 〉 〉)→ anIO or nil
open(aString 〈 , aMode 〈 , perm 〉 〉) {| anIO | block } → nil

Creates an IO object connected to the given stream, file, or subprocess.

If aString does not start with a pipe character (“|”), treat it as the name of a file to open
using the specified mode defaulting to “r” (see the table of valid modes on page 298).
If a file is being created, its initial permissions may be set using the integer third param-
eter.

If a block is specified, it will be invoked with the File object as a parameter, and the
file will be automatically closed when the block terminates. The call always returns
nil in this case.

If aString starts with a pipe character, a subprocess is created, connected to the caller
by a pair of pipes. The returned IO object may be used to write to the standard input
and read from the standard output of this subprocess. If the command following the “|”
is a single minus sign, Ruby forks, and this subprocess is connected to the parent. In
the subprocess, the open call returns nil. If the command is not “-”, the subprocess

KERNEL 383

K
er

ne
l

runs the command. If a block is associated with an open("|-") call, that block will be
run twice—once in the parent and once in the child. The block parameter will be an IO

object in the parent and nil in the child. The parent’s IO object will be connected to
the child’s $stdin and $stdout. The subprocess will be terminated at the end of the
block.

open("testfile") do |f|

print f.gets

end

produces:

This is line one

Open a subprocess and read its output:

cmd = open("|date")

print cmd.gets

cmd.close

produces:

Thu Dec 26 20:05:33 MSK 2002

Open a subprocess running the same Ruby program:

f = open("|-", "w+")

if f == nil

puts "in Child"

exit

else

puts "Got: #{f.gets}"

end

produces:

Got: in Child

Open a subprocess using a block to receive the I/O object:

open("|-") do |f|

if f == nil

puts "in Child"

else

puts "Got: #{f.gets}"

end

end

produces:

Got: in Child

p p(〈 anObject 〉+)→ nil

For each object, directly writes anObject.inspect followed by the current output
record separator to the program’s standard output. p bypasses the Ruby I/O libraries.

p self

produces:

main

K
er

ne
l

384 CHAPTER 23. BUILT-IN MODULES

print print(〈 anObject 〉∗)→ nil

Prints each object in turn to $defout. If the output field separator ($,) is not nil, its
contents will appear between each field. If the output record separator ($\) is not nil,
it will be appended to the output. If no arguments are given, prints $_. Objects that
aren’t strings will be converted by calling their to_s method.

print "cat", [1,2,3], 99, "\n"

$, = ", "

$\ = "\n"

print "cat", [1,2,3], 99

produces:

cat12399

cat, 1, 2, 3, 99

printf printf(anIO, aString 〈 , anObject 〉∗)→ nil

printf(aString 〈 , anObject 〉∗)→ nil

Equivalent to:

anIO.write sprintf(aString, anObject ...)

or
$defout.write sprintf(aString, anObject ...)

proc proc { block }→ aProc

Creates a new procedure object from the given block. Equivalent to Proc.new.

aProc = proc { "hello" }

aProc.call → "hello"

putc putc(anInteger)→ anInteger

Equivalent to $defout.putc(anInteger).

puts puts(〈 args 〉∗)→ nil

Equivalent to $defout.puts(args).

raise raise
raise(aString)

raise(anException 〈 , aString 〈 , anArray 〉 〉)

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil.
With a single String argument, raises a RuntimeError with the string as a message.
Otherwise, the first parameter should be the name of an Exception class (or an object
that returns an Exception when sent exception). The optional second parameter
sets the message associated with the exception, and the third parameter is an array of
callback information. Exceptions are caught by the rescue clause of begin...end
blocks.

raise "Failed to create socket"

raise ArgumentError, "No parameters", caller

KERNEL 385

K
er

ne
l

rand rand(max=0)→ aNumber

Converts max to an integer using max1 = max.to_i.abs. If the result is zero, returns
a pseudorandom floating point number greater than or equal to 0.0 and less than 1.0.
Otherwise, returns a pseudorandom integer greater than or equal to zero and less than
max1. Kernel.srandmay be used to ensure repeatable sequences of random numbers
between different runs of the program.

srand 1234 → 0

[rand, rand] → [0.1915194501634687,

0.49766366626136]

[rand(10), rand(1000)] → [6, 817]

srand 1234 → 1234

[rand, rand] → [0.1915194501634687,

0.49766366626136]

readline readline(〈 aString=$/ 〉)→ aString

Equivalent to Kernel.gets, except readline raises EOFError at end of file.

readlines readlines(〈 aString=$/ 〉)→ anArray

Returns an array containing the lines returned by calling Kernel.gets(aString)

until the end of file.

require require(aString)→ true or false

Ruby tries to load the library named aString, returning true if successful. If the file-
name does not resolve to an absolute path, it will be searched for in the directories listed
in $:. If the file has the extension “.rb”, it is loaded as a source file; if the extension is
“.so”, “.o”, or “.dll”,1 Ruby loads the shared library as a Ruby extension. Otherwise,
Ruby tries adding “.rb”, “.so”, and so on to the name. The name of the loaded feature
is added to the array in $". A feature will not be loaded if it already appears in $".
require returns true if the feature was successfully loaded.

require "my-library.rb"

require "db-driver"

scan scan(pattern)→ anArray
scan(pattern) { block } → $_

Equivalent to calling $_.scan. See String#scan on page 342.

select select(readArray 〈 , writeArray 〈 , errorArray 〈 , timeout 〉 〉 〉)→ anArray or nil

Performs a low-level select call, which waits for data to become available from
input/output devices. The first three parameters are arrays of IO objects or nil. The
last is a timeout in seconds, which should be an Integer or a Float. The call waits
for data to become available for any of the IO objects in readArray, for buffers to have
cleared sufficiently to enable writing to any of the devices in writeArray, or for an error
to occur on the devices in errorArray. If one or more of these conditions are met, the

1. Or whatever the default shared library extension is on the current platform.

K
er

ne
l

386 CHAPTER 23. BUILT-IN MODULES

call returns a three-element array containing arrays of the IO objects that were ready.
Otherwise, if there is no change in status for timeout seconds, the call returns nil. If
all parameters are nil, the current thread sleeps forever.

select([$stdin], nil, nil, 1.5) → [[#<IO:0x39a654>], [], []]

set_trace_func set_trace_func(aProc)→ aProc
set_trace_func(nil)→ nil

Establishes aProc as the handler for tracing, or disables tracing if the parameter is nil.
aProc takes up to six parameters: an event name, a filename, a line number, an object
id, a binding, and the name of a class. aProc is invoked whenever an event occurs.
Events are: c-call (call a C-language routine), c-return (return from a C-language
routine), call (call a Ruby method), class (start a class or module definition), end
(finish a class or module definition), line (execute code on a new line), raise (raise
an exception), and return (return from a Ruby method). Tracing is disabled within the
context of aProc.

See the example starting on page 242 for more information.

singleton_method_added singleton_method_added(aFixnum)→ nil

Invoked with a symbol id whenever a singleton method is added to a module or a class.
The default implementation in Kernel ignores this, but subclasses may override the
method to provide specialized functionality.

class Test

def Test.singleton_method_added(id)

puts "Added #{id.id2name} to Test"

end

def a() end

def Test.b() end

end

def Test.c() end

produces:
Added singleton_method_added to Test

Added b to Test

Added c to Test

sleep sleep(〈 aNumeric 〉)→ aFixnum

Suspends the current thread for aNumber seconds (which may be a Float with frac-
tional seconds). Returns the actual number of seconds slept (rounded), which may be
less than that asked for if the thread was interrupted by a SIGALRM, or if another thread
calls Thread#run. An argument of zero causes sleep to sleep forever.

Time.new → Thu Dec 26 20:05:33 MSK 2002

sleep 1.2 → 2

Time.new → Thu Dec 26 20:05:35 MSK 2002

sleep 1.9 → 1

Time.new → Thu Dec 26 20:05:36 MSK 2002

split split(〈 pattern 〈 , limit 〉 〉)→ anArray

Equivalent to $_.split(pattern, limit). See String#split on page 343.

KERNEL 387

K
er

ne
l

sprintf sprintf(aFormatString 〈 , arguments 〉∗)→ aString

Returns the string resulting from applying aFormatString to any additional arguments.
Within the format string, any characters other than format sequences are copied to the
result. A format sequence consists of a percent sign, followed by optional flags, width,
and precision indicators, then terminated with a field type character. The field type
controls how the corresponding sprintf argument is to be interpreted, while the flags
modify that interpretation. The flag characters are shown in Table 23.1 on the next page,
and the field type characters are listed in Table 23.2.

The field width is an optional integer, followed optionally by a period and a precision.
The width specifies the minimum number of characters that will be written to the result
for this field. For numeric fields, the precision controls the number of decimal places
displayed. For string fields, the precision determines the maximum number of char-
acters to be copied from the string. (Thus, the format sequence %10.10s will always
contribute exactly ten characters to the result.)

sprintf("%d %04x", 123, 123) → "123␣007b"

sprintf("%08b ’%4s’", 123, 123) → "01111011␣’␣123’"

sprintf("%*2$1$s %2$d", "hello", 10) → "␣␣␣␣␣hello␣10"

sprintf("%*2$1$s %2$d", "hello", -10) → "hello␣␣␣␣␣␣-10"

sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) → "+1.23:␣1.23:1.23"

srand srand(〈 aNumber 〉)→ oldSeed

Seeds the pseudorandom number generator to the value of aNumber.to_i.abs. If
aNumber is omitted or zero, seeds the generator using a combination of the time, the
process id, and a sequence number. (This is also the behavior if Kernel.rand is called
without previously calling srand, but without the sequence.) By setting the seed to a
known value, scripts can be made deterministic during testing. The previous seed value
is returned. Also see Kernel.rand on page 385.

sub sub(pattern, replacement)→ $_
sub(pattern) { block }→ $_

Equivalent to $_.sub(args), except that $_ will be updated if substitution occurs.

sub! sub!(pattern, replacement)→ $_ or nil
sub!(pattern) { block }→ $_ or nil

Equivalent to $_.sub!(args).

syscall syscall(aFixnum 〈 , args 〉∗)→ anInteger

Calls the operating system function identified by aFixnum, passing in the arguments,
which must be either String objects, or Integer objects that ultimately fit within a
native long. Up to nine parameters may be passed (14 on the Atari-ST). The function
identified by Fixnum is system dependent. On some Unix systems, the numbers may
be obtained from a header file called syscall.h.

syscall 4, 1, "hello\n", 6 # ’4’ is write(2) on our box

produces:
hello

K
er

ne
l

388 CHAPTER 23. BUILT-IN MODULES

Table 23.1. sprintf flag characters

Flag Applies to Meaning

␣ (space) bdeEfgGioxXu Leave a space at the start of positive numbers.
beEfgGoxX Use an alternative format. For the conversions ‘o’, ‘x’,

‘X’, and ‘b’, prefix the result with “0”, “0x”, “0X”, and
“0b”, respectively. For ‘e’, ‘E’, ‘f’, ‘g’, and ’G’, force a
decimal point to be added, even if no digits follow. For
‘g’ and ’G’, do not remove trailing zeros.

+ bdeEfgGioxXu Add a leading plus sign to positive numbers.
- all Left-justify the result of this conversion.
0 (zero) all Pad with zeros, not spaces.
* all Use the next argument as the field width. If negative,

left-justify the result. If the asterisk is followed by a
number and a dollar sign, use the indicated argument as
the width. You cannot mix unnumbered arguments with
numbered ones, only one style should be used in one
format sequence.

Table 23.2. sprintf field types

Field Conversion

b Convert argument as a binary number.
c Argument is the numeric code for a single character.
d Convert argument as a decimal number.
E Equivalent to ‘e’, but uses an uppercase E to indicate the exponent.
e Convert floating point argument into exponential notation with one digit before

the decimal point. The precision determines the number of fractional digits
(defaulting to six).

f Convert floating point argument as [␣-]ddd.ddd, where the precision deter-
mines the number of digits after the decimal point.

G Equivalent to ‘g’, but use an uppercase ‘E’ in exponent form.
g Convert a floating point number using exponential form if the exponent is less

than−4 or greater than or equal to the precision, or in d.dddd form otherwise.
i Identical to ‘d’.
o Convert argument as an octal number.
s Argument is a string to be substituted. If the format sequence contains a preci-

sion, at most that many characters will be copied.
u Treat argument as an unsigned decimal number.
X Convert argument as a hexadecimal number using uppercase letters.
x Convert argument as a hexadecimal number.

KERNEL 389

K
er

ne
l

system system(aCmd 〈 , args 〉∗)→ true or false

Executes aCmd in a subshell, returning true if the command was found and ran suc-
cessfully, false otherwise. A detailed error code is available in $?. The arguments are
processed in the same way as for Kernel.exec on page 379.

system("echo *")

system("echo", "*")

produces:
config.h main.rb

*

test test(aCmd, file1 〈 , file2 〉)→ anObject

Uses the integer aCmd to perform various tests on file1 (Table 23.3 on the following
page) or on file1 and file2 (Table 23.4).

throw throw(aSymbol 〈 , anObject 〉)

Transfers control to the end of the active catch block waiting for aSymbol. Raises
NameError if there is no catch block for the symbol. The optional second parame-
ter supplies a return value for the catch block, which otherwise defaults to nil. For
examples, see Kernel.catch on page 378.

trace_var trace_var(aSymbol, aCmd)→ nil

trace_var(aSymbol) {| val | block } → nil

Controls tracing of assignments to global variables. The parameter aSymbol identi-
fies the variable (as either a string name or a symbol identifier). cmd (which may
be a string or a Proc object) or block is executed whenever the variable is assigned.
The block or Proc object receives the variable’s new value as a parameter. Also see
Kernel.untrace_var.

trace_var :$_, proc {|v| puts "$_ is now ’#{v}’" }

$_ = "hello"

$_ = ’ there’

produces:
$_ is now ’hello’

$_ is now ’ there’

trap trap(signal, cmd)→ anObject
trap(signal) { block } → anObject

Specifies the handling of signals. The first parameter is a signal name (a string such
as “SIGALRM”, “SIGUSR1”, and so on) or a signal number. The characters “SIG”
may be omitted from the signal name. The command or block specifies code to be run
when the signal is raised. If the command is the string “IGNORE” or “SIG_IGN”, the
signal will be ignored. If the command is “DEFAULT” or “SIG_DFL”, the operating
system’s default handler will be invoked. If the command is “EXIT”, the script will be
terminated by the signal. Otherwise, the given command or block will be run.

The special signal name “EXIT” or signal number zero will be invoked just prior to
program termination.

K
er

ne
l

390 CHAPTER 23. BUILT-IN MODULES

Table 23.3. File tests with a single argument

Integer Description Returns

?A Last access time for file1 Time
?b True if file1 is a block device true or false
?c True if file1 is a character device true or false
?C Last change time for file1 Time
?d True if file1 exists and is a directory true or false
?e True if file1 exists true or false
?f True if file1 exists and is a regular file true or false
?g True if file1 has the setgid bit set (false under NT) true or false
?G True if file1 exists and has a group ownership equal to the

caller’s group
true or false

?k True if file1 exists and has the sticky bit set true or false
?l True if file1 exists and is a symbolic link true or false
?M Last modification time for file1 Time
?o True if file1 exists and is owned by the caller’s effective

uid
true or false

?O True if file1 exists and is owned by the caller’s real uid true or false
?p True if file1 exists and is a fifo true or false
?r True if file is readable by the effective uid/gid of the caller true or false
?R True if file is readable by the real uid/gid of the caller true or false
?s If file1 has nonzero size, return the size, otherwise return

nil

Integer or nil

?S True if file1 exists and is a socket true or false
?u True if file1 has the setuid bit set true or false
?w True if file1 exists and is writable by the effective uid/gid true or false
?W True if file1 exists and is writable by the real uid/gid true or false
?x True if file1 exists and is executable by the effective

uid/gid
true or false

?X True if file1 exists and is executable by the real uid/gid true or false
?z True if file1 exists and has a zero length true or false

Table 23.4. File tests with two arguments

Integer Description

?- True if file1 is a hard link to file2
?= True if the modification times of file1 and file2 are equal
?< True if the modification time of file1 is prior to that of file2
?> True if the modification time of file1 is after that of file2

MARSHAL 391

M
ar

sh
al

trap returns the previous handler for the given signal.

trap 0, proc { puts "Terminating: #{$$}" }

trap("CLD") { puts "Child died" }

fork && Process.wait

produces:

Terminating: 28510

Child died

Terminating: 28509

untrace_var untrace_var(aSymbol 〈 , aCmd 〉)→ anArray or nil

Removes tracing for the specified command on the given global variable and returns
nil. If no command is specified, removes all tracing for that variable and returns an
array containing the commands actually removed.

Module Marshal
The marshaling library converts collections of Ruby objects into a byte stream, allow-
ing them to be stored outside the currently active script. This data may subsequently
be read and the original objects reconstituted. Marshaling is described starting on
page 244.

Some objects cannot be dumped: if the objects to be dumped include bindings, proce-
dure objects, instances of class IO, or singleton objects, a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in
some specific format), or if it contains objects that would otherwise not be serializable,
you can implement your own serialization strategy by defining two methods, _dump
and _load:

Method Type Signature Returns

Instance _dump(aDepth) Returns a String
Class _load(aString) Returns a reconstituted Object

The instance method _dump should return a String object containing all the informa-
tion necessary to reconstitute objects of this class and all referenced objects up to a
maximum depth of aDepth (a value of −1 should disable depth checking). The class
method _load should take a String and return an object of this class.

Module methods
dump dump(anObject 〈 , anIO 〉 , limit=–1)→ anIO

Serializes anObject and all descendent objects. If anIO is specified, the serialized data
will be written to it, otherwise the data will be returned as a String. If limit is specified,
the traversal of subobjects will be limited to that depth. If limit is negative, no checking
of depth will be performed.

M
at

h

392 CHAPTER 23. BUILT-IN MODULES

class Klass

def initialize(str)

@str = str

end

def sayHello

@str

end

end

o = Klass.new("hello\n")

data = Marshal.dump(o)

obj = Marshal.load(data)

obj.sayHello → "hello\n"

load load(from 〈 , aProc 〉)→ anObject

Returns the result of converting the serialized data in from into a Ruby object (possibly
with associated subordinate objects). from may be either an instance of IO or an object
that responds to to_str. If proc is specified, it will be passed each object as it is
deserialized.

restore restore(from 〈 , aProc 〉)→ anObject

A synonym for Marshal.load.

Module Math
The Mathmodule contains module functions for basic trigonometric and transcendental
functions.

Module constants

E Value of e (base of natural logarithms)
PI Value of π

Module methods
atan2 Math.atan2(y, x)→ aFloat

Computes the arc tangent given y and x. Returns −π..π.

cos Math.cos(aNumeric)→ aFloat

Computes the cosine of aNumeric (expressed in radians). Returns −1..1.

exp Math.exp(aNumeric)→ aFloat

Returns e raised to the power of aNumeric.

frexp Math.frexp(aNumeric)→ anArray

Returns a two-element array ([aFloat, aFixnum]) containing the normalized fraction
and exponent of aNumeric.

OBJECTSPACE 393

O
bj

ec
tS

pa
ce

ldexp Math.ldexp(aFloat, anInteger)→ aFloat

Returns the value of aFloat× 2anInteger.

log Math.log(aNumeric)→ aFloat

Returns the natural logarithm of aNumeric.

log10 Math.log10(aNumeric)→ aFloat

Returns the base 10 logarithm of aNumeric.

sin Math.sin(aNumeric)→ aFloat

Computes the sine of aNumeric (expressed in radians). Returns −1..1.

sqrt Math.sqrt(aNumeric)→ aFloat

Returns the non-negative square root of aNumeric. Raises ArgError if aNumeric is
less than zero.

tan Math.tan(aNumeric)→ aFloat

Returns the tangent of aNumeric (expressed in radians).

Module ObjectSpace
The ObjectSpacemodule contains a number of routines that interact with the garbage
collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers, procs that will be called when
a specific object is about to be destroyed by garbage collection.

include ObjectSpace

a = "A"

b = "B"

c = "C"

define_finalizer(a, proc {|id| puts "Finalizer one on #{id}" })

define_finalizer(a, proc {|id| puts "Finalizer two on #{id}" })

define_finalizer(b, proc {|id| puts "Finalizer three on #{id}" })

produces:
Finalizer three on 1877986

Finalizer one on 1877996

Finalizer two on 1877996

Module methods
_id2ref ObjectSpace._id2ref(anId)→ anObject

Converts an object id to a reference to the object. May not be called on an object id
passed as a parameter to a finalizer.

s = "I am a string" → "I am a string"

r = ObjectSpace._id2ref(s.id) → "I am a string"

r == s → true

P
ro

ce
ss

394 CHAPTER 23. BUILT-IN MODULES

define_finalizer ObjectSpace.define_finalizer(anObject, aProc=proc())

Adds aProc as a finalizer, to be called when anObject is about to be destroyed.

each_object ObjectSpace.each_object(〈 aClassOrMod 〉) {| anObj | block }→ aFixnum

Calls the block once for each living, nonimmediate object in this Ruby process. If
aClassOrMod is specified, calls the block for only those classes or modules that match
(or are a subclass of) aClassOrMod. Returns the number of objects found.

a = 102.7

b = 95

ObjectSpace.each_object(Numeric) {|x| p x }

print "Total count: ", ObjectSpace.each_object {} ,"\n"

produces:
102.7

2.718281828459045

3.141592653589793

Total count: 383

garbage_collect ObjectSpace.garbage_collect→ nil

Initiates garbage collection (see module GC on page 375).

undefine_finalizer ObjectSpace.undefine_finalizer(anObject)

Removes all finalizers for anObject.

Module Process
The Process module is a collection of methods used to manipulate processes.

Module constants

PRIO_PGRP Process Group priority.
PRIO_PROCESS Process priority.
PRIO_USER User priority.
WNOHANG Do not block if no child has exited. Not available on all plat-

forms.
WUNTRACED Return stopped children as well. Not available on all plat-

forms.

Module methods
egid Process.egid→ aFixnum

Returns the effective group id for this process.

Process.egid → 518

egid= Process.egid= aFixnum→ aFixnum

Sets the effective group id for this process.

PROCESS 395

P
ro

ce
ss

euid Process.euid→ aFixnum

Returns the effective user id for this process.

Process.euid → 514

euid= Process.euid= aFixnum

Sets the effective user id for this process. Not available on all platforms.

exit! Process.exit!(aFixnum=−1)

Exits the process immediately. No exit handlers are run. aFixnum is returned to the
underlying system as the exit status.

Process.exit!(0)

fork Process.fork 〈 { block } 〉 → aFixnum or nil

See Kernel.fork on page 380.

getpgid Process.getpgid(anInteger)→ anInteger

Returns the process group id for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid()) → 26386

getpgrp Process.getpgrp→ anInteger

Returns the process group id for this process. Not available on all platforms.

Process.getpgid(0) → 26386

Process.getpgrp → 26386

getpriority Process.getpriority(aKind, anInteger)→ aFixnum

Gets the scheduling priority for specified process, process group, or user. aKind indi-
cates the kind of entity to find: one of Process::PRIO_PGRP,Process::PRIO_USER,
or Process::PRIO_PROCESS. anInteger is an id indicating the particular process, pro-
cess group, or user (an id of 0 means current). Lower priorities are more favorable for
scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0) → 19

Process.getpriority(Process::PRIO_PROCESS, 0) → 19

gid Process.gid→ aFixnum

Returns the group id for this process.

Process.gid → 518

gid= Process.gid= aFixnum→ aFixnum

Sets the group id for this process.

kill Process.kill(aSignal, 〈 aPid 〉+)→ aFixnum

Sends the given signal to the specified process id(s), or to the current process if aPid
is zero. aSignal may be an integer signal number or a POSIX signal name (either with

P
ro

ce
ss

396 CHAPTER 23. BUILT-IN MODULES

or without a SIG prefix). If aSignal is negative (or starts with a “-” sign), kills process
groups instead of processes. Not all signals are available on all platforms.

trap("SIGHUP") { close_then_exit }

Process.kill("SIGHUP", 0)

pid Process.pid→ aFixnum

Returns the process id of this process. Not available on all platforms.

Process.pid → 28552

ppid Process.ppid→ aFixnum

Returns the process id of the parent of this process. Always returns 0 on NT. Not avail-
able on all platforms.

print "I am ", Process.pid, "\n"

Process.fork { print "Dad is ", Process.ppid, "\n" }

produces:
I am 28554

Dad is 28554

setpgid Process.setpgid(aPid, anInteger)→ 0

Sets the process group id of aPid (0 indicates this process) to anInteger. Not available
on all platforms.

setpgrp Process.setpgrp→ 0

Equivalent to setpgid(0,0). Not available on all platforms.

setpriority Process.setpriority(kind, anInteger, anIntPriority)→ 0

See Process#getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19) → 0

Process.setpriority(Process::PRIO_PROCESS, 0, 19) → 0

Process.getpriority(Process::PRIO_USER, 0) → 19

Process.getpriority(Process::PRIO_PROCESS, 0) → 19

setsid Process.setsid→ aFixnum

Establishes this process as a new session and process group leader, with no controlling
tty. Returns the session id. Not available on all platforms.

Process.setsid → 28560

times Process.times→ aStructTms

Returns a Tms structure (see Struct::Tms on page 351) that contains user and system
CPU times for this process.

t = Process.times

[t.utime, t.stime] → [0.02, 0.01]

uid Process.uid→ aFixnum

Returns the user id of this process.

PROCESS 397

P
ro

ce
ss

Process.uid → 514

uid= Process.uid= anInteger→ aNumeric

Sets the (integer) user id for this process. Not available on all platforms.

wait Process.wait→ aFixnum

Waits for any child process to exit and returns the process id of that child. Raises a
SystemError if there are no child processes. Not available on all platforms.

Process.fork { exit 1; } → 28571

Process.wait → 28571

wait2 Process.wait2→ anArray

Waits for any child process to exit and returns an array containing the process id and
the exit status of that child. Raises a SystemError if there are no child processes.

Process.fork { exit 1 } → 28577

Process.wait2 → [28577, 256]

waitpid Process.waitpid(aPid, anInteger=0)→ aPid

Waits for the given child process to exit. anInteger may be a logical or of the flag value
Process::WNOHANG (do not block if no child available) or Process::WUNTRACED
(return stopped children that haven’t been reported). Not all flags are available on all
platforms, but a flag value of zero will work on all platforms.

include Process

pid = fork { sleep 3 } → 28580

Time.now → Thu Dec 26 20:05:38 MSK 2002

waitpid(pid, Process::WNOHANG) → nil

Time.now → Thu Dec 26 20:05:38 MSK 2002

waitpid(pid, 0) → 28580

Time.now → Thu Dec 26 20:05:41 MSK 2002

waitpid2 Process.waitpid2(aPid, anInteger=0)→ anArray

Waits for the given child process to exit, returning that child’s process id and exit status.
anInteger may be a logical or of the flag value Process::WNOHANG (do not block if no
child available) or Process::WUNTRACED (return stopped children that haven’t been
reported). Not all flags are available on all platforms, but a flag value of zero will work
on all platforms.

Chapter 24

Standard Library

Ruby comes “out of the box” with a large and useful library of modules and classes.
This chapter contains a sampling of the more useful of these.

Interestingly, and unlike some of the code in later chapters, all of these libraries are
written in Ruby. You’ll find the source in the lib subdirectory of the standard Ruby
distribution.

Class Complex < Numeric
require "complex"

require "complex"

v1 = Complex(2,3) → Complex(2, 3)

v2 = 2.im → Complex(0, 2)

v1 + v2 → Complex(2, 5)

v1 * v2 → Complex(-6, 4)

v2**2 → Complex(-4, 0)

Math.sin(v1) → Complex(9.15449914691143,

-4.168906959966565)

v1 < v2 → false

v2**2 == -4 → true

Class constants

Complex::I 0 + 1i

Class methods
new Complex.new(a, b)→ aComplex

Returns a + bi.

In addition to the Complex.new constructor, the Complex library defines the method
Numeric.im, such that aNumeric.im returns 0 + aNumerici. Complex numbers are
also constructed using the global method Complex, which takes one or two arguments.
The value it returns depends on the type of its arguments:

399

C
om

pl
ex

400 CHAPTER 24. STANDARD LIBRARY

a b Result

Number Number a + bi

Complex 0 a
Complex Complex Complex(a.real - b.image, a.image + b.real)

Number Complex Complex(a - b.image, b.real)

Instance methods
Arithmetic operations

Performs various arithmetic operations on cmplx.

cmplx + aNumeric→ aComplex Addition
cmplx - aNumeric→ aComplex Subtraction
cmplx * aNumeric→ aComplex Multiplication
cmplx / aNumeric→ aComplex Division
cmplx % aNumeric→ aComplex Remainder
cmplx ** aNumeric→ aComplex Exponentiation (real and complex power)

<=> cmplx <=> other→−1, 0, +1

Returns cmplx.abs <=> other.abs.

== cmplx == anObject→ true or false

If anObject is a complex number, returns true if its real and imaginary parts match
cmplx. If anObject is a simple number, returns true if cmplx.real equals anObject
and cmplx.image is zero. Otherwise, attempts to coerce anObject to a complex number
and compares the result.

abs cmplx.abs→ aFloat

Absolute value.

abs2 cmplx.abs2→ aFloat

Square of absolute value.

arg cmplx.arg→ aFloat

Argument (angle from (1,0)).

conjugate cmplx.conjugate→ aComplex

Complex conjugate.

image cmplx.image→ aNumeric

The imaginary part of cmplx.

polar cmplx.polar→ anArray

Returns the two-element array: [c.abs, c.arg].

DATE 401

D
at

e

real cmplx.real→ aNumeric

The real part of cmplx.

to_f cmplx.to_f→ aComplex

Returns Complex(real.to_f, image.to_f).

to_i cmplx.to_i→ aComplex

Returns Complex(real.to_i, image.to_i).

to_r cmplx.to_r→ aComplex

Returns Complex(real.to_r, image.to_r), converting both parts of the complex
to a rational number.

to_s cmplx.to_s→ aString

String representation of cmplx.

In addition, the Math functions sqrt, exp, cos, sin, tan, log, log10, and atan2 are
extended to support a Complex argument.

Class Date < Object
require "date"

require ’date’

d = Date.new(2000, 3, 31) → #<Date: 4903269/2,0,2299161>

[d.year, d.yday, d.wday] → [2000, 91, 5]

[d.month, d.mday] → [3, 31]

[d.cwyear, d.cweek, d.cwday] → [2000, 13, 5]

[d.jd, d.mjd] → [2451635, 51634]

(d << 1).to_s → "2000-02-29"

d.succ.to_s → "2000-04-01"

(d + 100).to_s → "2000-07-09"

d.leap? → true

Date.new(2000, 3, -10).to_s → "2000-03-22"

d1 = Date.neww(2000, 13, 7) → #<Date: 4903273/2,0,2299161>

d1.to_s → "2000-04-02"

[d1.cwday, d1.wday] → [7, 0]

The date library implements class Date, which provides a comprehensive set of facil-
ities for storing, manipulating, and converting dates. To document its options, we need
to take a brief historical detour to establish some vocabulary.

Internally a date is stored as a Julian day number, the number of days since midday,
January 1st, 4713 BCE.1 The rules for converting a Julian day number to a calendar
date are complicated because the Romans estimated the length of a year incorrectly. In

1. In the code, you may find references to the year −4712. As astronomical dates include a year zero,
4713 BCE is the same year as −4712.

D
at

e

402 CHAPTER 24. STANDARD LIBRARY

the Julian calendar (often called Old Style, or O.S.), every year divisible by 4 is a leap
year. The Date class has options to convert dates using this as an assumption.

By the sixteenth century, the inaccuracies in this measurement had become apparent.
An edict from Pope Gregory XIII in 1582 created the New Style (N.S.) or Gregorian
calendar, where years divisible by 100 were no longer leap years unless they were also
divisible by 400. This system was adopted by most Catholic countries immediately, but
religious differences held up a wider adoption. England (and several other countries)
switched in 1752, with some countries following later. The Date class allows you to
determine whether to implement the cutover in 1582 (the Date::ITALY option), 1752
(Date::ENGLAND), or another date of your choosing.

The Date class also provides conversions to Modified Julian Day (MJD) numbers.
MJD values count from midnight, November 17, 1858. Because these values count
from midnight, not midday, there is a half-day added to the conversion factor.

The descriptions that follow use the abbreviations listed in Table 24.1 on the facing
page.

Class Date exports the constant arrays Date::MONTHNAMES and Date::DAYNAMES,
which can be indexed by mon and wday values to return the corresponding English
names.

The Date class also provides low-level date-conversion methods:

• civil_to_jd • jd_to_civil

• commercial_to_jd • jd_to_commercial

• ordinal_to_jd • jd_to_ordinal

• jd_to_mjd • mjd_to_jd

These methods perform limited error checking of their parameters, and are not docu-
mented here. The somewhat confusingly named exist..? routines perform conver-
sions from different formats into a Julian day number with error checking. These rou-
tines also automatically normalize their parameters.

Mixes in

Comparable:
<, <=, ==, >=, >, between?

Class methods
exist2? Date.exist2?(year, yday, sg=Date::ITALY)→ jd

Converts a year and yday into a Julian day number, returning nil on error.

exist? Date.exist?(year, mon, mday, sg=Date::ITALY)→ jd

Converts a year, mon, and mday into a Julian day number, or nil if the parameters are
invalid.

existw? Date.existw?(cyear, cweek, cwday, sg=Date::ITALY)→ jd

Converts a cyear, cweek, and cwday into a Julian day number.

DATE 403

D
at

e

Table 24.1. Abbreviations used describing dates

Field Meaning

cwday An ISO 8601 calendar weekday. 1 is Monday, 7 is Sunday.
cweek An ISO 8601 calendar week. Week 1 is the week containing the first Thurs-

day (or equivalently the week that contains January 4th).
cwyear An ISO 8601 calendar-week-based year. May be different from year, as it

rolls forward only on a Monday.
jd The Julian day number—the number of days since January 1st, 4713 BCE.
mday The day of the month (1..31).
mjd A modified Julian day number.
mon The month of the year (1..12).
sg The start of the Gregorian correction: Date::ITALY (the default) for 1582,

Date::ENGLAND for 1752, or JULIAN, meaning no correction. You may also
provide an arbitrary Julian day number for this parameter, in which case the
correction will start from this date.

wday The day of the week (0 is Sunday).
week The week number into a year (1..53).
yday The day into the year (1..366).
year A year (1966, 2001, and the like).

gregorian_leap? Date.gregorian_leap?(year)→ true or false

If year does not end with “00”, returns true if year is divisible by 4, otherwise returns
true if year is divisible by 400.

julian_leap? Date.julian_leap?(year)→ true or false

Returns true if year is divisible by 4.

leap? Date.leap?(year)→ true or false

Synonym for Date.gregorian_leap?.

new Date.new(year=−4712, mon=1, mday=1, sg=Date::ITALY)→ aNewDate

Returns a Date for the given year, mon, and mday. If mon is negative, it counts back
from the end of the year. If mday is negative, it counts back from the end of the month.

new1 Date.new1(jd, sg=Date::ITALY)→ aNewDate

Creates a Date corresponding to the given Julian day number.

new2 Date.new2(year=−4712, yday=1, sg=Date::ITALY)→ aNewDate

Returns a Date for the given year and yday. If yday is negative, it counts back from the
end of the year.

new3 Date.new3(year=−4712, mon=1, mday=1, sg=Date::ITALY)→ aNewDate

Synonym for Date.new.

D
at

e

404 CHAPTER 24. STANDARD LIBRARY

neww Date.neww(cyear=1582, cweek=41, cwday=5, sg=Date::ITALY)→ aNewDate

Returns a Date for the given cyear, cweek, and cwday. If cweek is negative, it counts
back from the end of the year. If cwday is negative, it counts back from the end of the
week.

today Date.today(sg=Date::ITALY)→ aNewDate

Returns a Date for today.

Instance methods
Accessors aDate.year→ year

aDate.yday→ yday
aDate.mjd→ mjd

aDate.mon→ mon
aDate.month→ mon
aDate.mday→ mday

aDate.day→ mday
aDate.cwyear→ cwyear

aDate.cweek→ cweek
aDate.cwday→ cwday

aDate.wday→ wday

Returns the given component of aDate as a number.

+ aDate + anInteger→ aNewDate

Returns a new Date anInteger days from aDate.

– aDate - anInteger→ aNewDate
aDate - anOtherDate→ anInteger

The first form returns a new Date anInteger days before aDate. The second form
returns the number of days between aDate and anOtherDate.

<< aDate << anInteger→ aNewDate

Returns a new Date formed by subtracting anInteger months to aDate, adjusting the
mday value back to the last day of the month if it otherwise exceeds it.

<=> aDate <=> anOther→−1, 0, +1

anOther must be a Numeric, in which case it is treated as a Julian day number, or a
Date. Returns −1, 0, +1 if aDate is less than, equal to, or greater than anOther. See
module Comparable on page 368.

=== aDate === anOther→ true or false

anOther must be a Numeric, in which case it is treated as a Julian day number, or a
Date. Returns true if the Julian day number of anOther is the same as aDate.

>> aDate >> anInteger→ aNewDate

Returns a new Date formed by adding anInteger months to aDate, adjusting the mday
value back to the last day of the month if it otherwise exceeds it.

DATE 405

D
at

e

downto aDate.downto(aDateMin) {| date | block } → aDate

Invokes block with dates from aDate down to aDateMin.

england aDate.england→ aDate

Equivalent to aDate.newsg(Date::ENGLAND).

gregorian aDate.gregorian→ aDate

Equivalent to aDate.newsg(Date::GREGORIAN).

italy aDate.italy→ aDate

Equivalent to aDate.newsg(Date::ITALY).

jd aDate.jd→ jd

Returns the Julian day number for aDate.

julian aDate.julian→ aDate

Equivalent to aDate.newsg(Date::JULIAN).

leap? aDate.leap?→ true or false

Returns true if aDate falls within a leap year.

mjd aDate.mjd→ mjd

Returns the Julian day number of aDate converted to a modified Julian day number.

newsg aDate.newsg(sg=Date::ITALY)→ aNewDate

Returns a new Date.

next aDate.next→ aNewDate

Synonym for aDate.succ.

ns? aDate.ns?→ true or false

Returns true if aDate falls in the period of New Style dates.

os? aDate.os?→ true or false

Returns true if aDate falls in the period of Old Style dates.

sg aDate.sg→ anInteger

Returns the Julian day number of the start of New Style dates for aDate.

step aDate.step(aDateLimit, step) {| date | block } → aDate

Invokes block with dates starting at aDate, incrementing by step days, ending at the
first date greater than aDateLimit (less than for a negative step).

succ aDate.succ→ aNewDate

Returns the date of aDate plus one day.

E
ng

lis
h

406 CHAPTER 24. STANDARD LIBRARY

to_s aDate.to_s→ aString

Returns self as “year-mon-mday.”

upto aDate.upto(aDateMax) {| date | block } → aDate

Invokes block with dates from aDate to aDateMax.

Library English require "English"
require "English"

$OUTPUT_FIELD_SEPARATOR = ’ -- ’

"waterbuffalo" =~ /buff/

print $LOADED_FEATURES, $POSTMATCH, $PID, "\n"

print $", $’, $$, "\n"

produces:
English.rb -- alo -- 28604 --

English.rb -- alo -- 28604 --

Include the English library file in a Ruby script, and you can reference the global vari-
ables such as $_ using less cryptic names, listed in the following table.

$* $ARGV $" $LOADED_FEATURES
$? $CHILD_STATUS $& $MATCH
$< $DEFAULT_INPUT $. $NR
$> $DEFAULT_OUTPUT $, $OFS
$! $ERROR_INFO $\ $ORS
$@ $ERROR_POSITION $\ $OUTPUT_RECORD_SEPARATOR
$; $FIELD_SEPARATOR $, $OUTPUT_FIELD_SEPARATOR
$; $FS $$ $PID
$= $IGNORECASE $’ $POSTMATCH
$. $INPUT_LINE_NUMBER $‘ $PREMATCH
$/ $INPUT_RECORD_SEPARATOR $$ $PROCESS_ID
$~ $LAST_MATCH_INFO $0 $PROGRAM_NAME
$+ $LAST_PAREN_MATCH $/ $RS
$_ $LAST_READ_LINE

FIND 407

F
to

ol
s

Module Find require "find"
require "find"

Find.find("/etc/passwd", "/var/spool/lp1", ".") do |f|

Find.prune if f == "."

puts f

end

produces:
/etc/passwd

/var/spool/lp1

The Find module supports the top-down traversal of a set of file paths.

Module methods
find Find.find(〈 aName 〉∗) {| aFileName | block }

Calls the associated block with the name of every file and directory listed as arguments,
then recursively on their subdirectories, and so on.

prune Find.prune

Skips the current file or directory, restarting the loop with the next entry. If the current
file is a directory, that directory will not be recursively entered. Meaningful only within
the block associated with Find.find.

Class File < IO
require "ftools"

require ’ftools’

File.copy ’testfile’, ’testfile1’ → true

File.compare ’testfile’, ’testfile1’ → true

The FTools library adds several methods to the built-in File class. These methods are
particularly useful to programs that move and copy files, such as installers.

Class methods
cmp File.cmp(name1, name2, verbose=false)→ true or false

Synonym for File.compare.

compare File.compare(name1, name2, verbose=false)→ true or false

Returns true only if the contents of files name1 and name2 are identical.

copy File.copy(fromName, toName, verbose=false)→ true or false

Equivalent to calling File.syscopy, but logs the attempt to $stderr if verbose is not
false.

cp File.cp(fromName, toName, verbose=false)→ true or false

Synonym for File.copy.

F
to

ol
s

408 CHAPTER 24. STANDARD LIBRARY

install File.install(fromName, toName, aMode=nil, verbose=false)

Copies file fromName to file toName using File.syscopy, unless toName already
exists and has the same content as fromName. Sets the mode of the resulting file to
aMode unless aMode is nil.

makedirs File.makedirs(〈 dirName 〉∗ 〈 , aBoolean 〉)

Creates the given directories, logging each attempt to $stderr if the last parameter is
true. Creates any missing parent directories as required.

mkpath File.mkpath(〈 dirName 〉∗ 〈 , aBoolean 〉)

Synonym for File.makedirs.

move File.move(fromName, toName, verbose=false)→ true or false

Effectively renames fromName to toName, logging to $stderr if verbose is not false.

mv File.mv(fromName, toName, verbose=false)→ true or false

Synonym for File.move.

rm_f File.rm_f(〈 fileName 〉∗ 〈 , aBoolean 〉)→ anInteger

Synonym for File.safe_unlink (the name refers to the Unix rm -f command).

safe_unlink File.safe_unlink(〈 fileName 〉∗ 〈 , aBoolean 〉)→ anInteger or nil

Unlinks (deletes) the given files, logging to $stderr if the last parameter is true. The
method attempts to make all files writable before unlinking them, so no errors will
occur deleting read-only files. Returns the number of files deleted, or nil on error.

syscopy File.syscopy(fromName, toName)→ true or false

Efficiently copies the file named fromName to toName. If toName names a directory,
the destination will be a file in that directory with the same basename as fromName.
After the copy, the file mode of toName will be the same as that of fromName. Returns
true on success.

GETOPTLONG 409

G
et

op
tlo

ng

Class GetoptLong < Object
require "getoptlong"

Call using "ruby example.rb --size 10k -v -q a.txt b.doc"

require ’getoptlong’

specify the options we accept and initialize

the option parser

opts = GetoptLong.new(

["--size", "-s", GetoptLong::REQUIRED_ARGUMENT],

["--verbose", "-v", GetoptLong::NO_ARGUMENT],

["--query", "-q", GetoptLong::NO_ARGUMENT],

["--check", "--valid", "-c", GetoptLong::NO_ARGUMENT]

)

process the parsed options

opts.each do |opt, arg|

puts "Option: #{opt}, arg #{arg.inspect}"

end

puts "Remaining args: #{ARGV.join(’, ’)}"

produces:

Option: --size, arg "10k"

Option: --verbose, arg ""

Option: --query, arg ""

Remaining args: a.txt, b.doc

Class GetoptLong supports GNU-style command-line option parsing. Options may be
a minus sign (‘-’) followed by a single character, or two minus signs (‘- -’) followed by
a name (a long option). Long options may be abbreviated to their shortest unambiguous
lengths.

A single internal option may have multiple external representations. For example, the
option to control verbose output could be any of -v, --verbose, or --details. Some
options may also take an associated value.

Each internal option is passed to GetoptLong as an array, containing strings repre-
senting the option’s external forms and a flag. The flag (NO_ARGUMENT, REQUIRED_
ARGUMENT, or OPTIONAL_ARGUMENT) specifies how GetoptLong is to associate an
argument with the option.

If the environment variable POSIXLY_CORRECT is set, all options must precede nonop-
tions on the command line. Otherwise, the default behavior of GetoptLong is to reorga-
nize the command line to put the options at the front. This behavior may be changed by
setting GetoptLong#ordering= to one of the constants PERMUTE, REQUIRE_ORDER,
or RETURN_IN_ORDER. POSIXLY_CORRECTmay not be overridden.

Class constants

G
et

op
tlo

ng

410 CHAPTER 24. STANDARD LIBRARY

Per-option constants

NO_ARGUMENT Flags an option that takes no argument.
OPTIONAL_ARGUMENT A nonoption following this option will be used as this

option’s argument.
REQUIRED_ARGUMENT This option must be followed by an argument.

Overall constants

PERMUTE Options and their arguments will be shuffled to the front of
the command line.

REQUIRE_ORDER Options and their arguments must appear at the start of the
command line. The first nonoption terminates option pro-
cessing.

RETURN_IN_ORDER Return options in the order in which they occur on the com-
mand line.

Class methods
new GetoptLong.new(〈 options 〉∗)→ getopt

Returns a new option parser. Any options are passed to getopt.set_options.

Instance methods
each getopt.each {| anOption, anArgument | block }

Loops calling GetoptLong#get, passing the returned option and argument to the asso-
ciated block. The loop ends when get returns nil for anOption.

error? getopt.error?→ anException

Returns an Exception object documenting any error that has occurred, or nil if there
has not been an error.

error_message getopt.error_message→ aString

Returns the text of the last error message.

get getopt.get→ [anOption, anArgument]

Returns the next option, along with any associated argument. If there is no argument,
nil is returned for anArgument. If there are no remaining unprocessed options, or if
there is an error in option processing and quiet has been set, nil is returned for an-
Option. Otherwise, if there is an error, a message is written to $stderr and an excep-
tion (a subclass of StandardError) is raised.

The option string returned is the first option that was given in the corresponding array
passed to set_options.

get_option getopt.get_option→ [anOption, anArgument]

Synonym for GetoptLong#get.

GETOPTLONG 411

G
et

op
tlo

ng

ordering getopt.ordering→ aFixnum

Returns the current ordering.

ordering= getopt.ordering = aFixnum

Sets the ordering to one of PERMUTE, REQUIRE_ORDER, or RETURN_IN_ORDER. Quietly
ignored if the environment variable POSIXLY_CORRECT is set. Ordering may not be
changed once option processing has been started.

quiet getopt.quiet→ true or false

Returns the current value of the quiet attribute.

quiet= getopt.quiet = true or false

Sets the current value of the quiet attribute. If false, any errors encountered are
reported to $stderr.

quiet? getopt.quiet?→ true or false

Synonym for GetoptLong#quiet.

set_options getopt.set_options(〈 anOptArray 〉∗)→ getopt

Each parameter is an array specifying a single internal option. The array contains one
or more strings specifying the external form(s) of the option, and one of the flags
NO_ARGUMENT, OPTIONAL_ARGUMENT, or REQUIRED_ARGUMENT. See the sample code
on page 409 for examples of use.

terminate getopt.terminate→ getopt

Terminates option processing. Any remaining arguments are written back to ARGV. This
may be called from within a GetoptLong#each or on its own. For example, calling
the following program using “ruby example.rb –size 10k -v -term -q a.txt

b.doc” will leave the -q and filenames in ARGV.

require ’getoptlong’

opts = GetoptLong.new(

["--size", "-s", GetoptLong::REQUIRED_ARGUMENT],

["--verbose", "-v", GetoptLong::NO_ARGUMENT],

["--term", "-t", GetoptLong::NO_ARGUMENT],

["--query", "-q", GetoptLong::NO_ARGUMENT],

["--check", "--valid", "-c", GetoptLong::NO_ARGUMENT]

)

opts.each do |opt, arg|

puts "Option: #{opt}, arg #{arg.inspect}"

opts.terminate if (opt == ’--term’)

end

puts "Remaining args: #{ARGV.join(’, ’)}"

produces:
Option: --size, arg "10k"

Option: --verbose, arg ""

Option: --term, arg ""

Remaining args: -q, a.txt, b.doc

M
km

f

412 CHAPTER 24. STANDARD LIBRARY

terminated? getopt.terminated?→ true or false

Returns true if option processing has been terminated.

Module mkmf require "mkmf"
The mkmf library is used by Ruby extension modules to help create Makefiles. When
writing an extension, you create a program named “extconf.rb”, which may be as
simple as:

require ’mkmf’

create_makefile("Test")

When run, this script will produce a Makefile suited to the target platform. mkmf con-
tains several methods you can use to find libraries and include files and to set compiler
flags.

For more information on creating extension modules, see Chapter 17, which begins on
page 153.

Module constants

PLATFORM A constant string that describes the platform on which Ruby
is running, such as “mswin32” or “i686-linux.”

$CFLAGS Global variable for compiler flags.
$LDFLAGS Global variable for linker flags.

Instance methods
create_makefile create_makefile(target)

Creates a Makefile for an extension named target. If this method is not called, no
Makefile is created.

dir_config dir_config(name)

Looks for directory configuration options for name given as arguments to this program
or to the original build of Ruby. These arguments may be one of:

--with-name-dir=directory
--with-name-include=directory
--with-name-lib=directory

The given directories will be added to the appropriate search paths (include or link) in
the Makefile.

find_library find_library(name, function, 〈 path 〉+)→ true or false

Same as have_library, but will also search in the given directory paths.

have_func have_func(function)→ true or false

If the named function exists in the standard compile environment, adds the directive
-D HAVE_FUNCTION to the compile command in the Makefile and returns true.

PARSEDATE 413

P
ar

se
da

te

have_header have_header(header)→ true or false

If the given header file can be found in the standard search path, adds the directive
-D HAVE_HEADER to the compile command in the Makefile and returns true.

have_library have_library(library, function)→ true or false

If the given function exists in the named library, which must exist in the standard search
path or in a directory added with dir_config, adds the library to the link command in
the Makefile and returns true.

Module ParseDate require "parsedate"
The ParseDatemodule defines a single method, ParseDate.parsedate, which con-
verts a date and/or time string into its constituents. It uses heuristics that handle a wide
variety of date and time formats, including a subset of ISO 8601, Unix ctime, and most
common written variants. The following table shows some examples.

String Guess? yy mm dd hh min sec zone wd

1999-09-05 23:55:21+0900 F 1999 9 5 23 55 21 +0900 –
1983-12-25 F 1983 12 25 – – – – –
1965-11-10 T13:45 F 1965 11 10 13 45 – – –
10/9/75 1:30pm F 75 10 9 13 30 – – –
10/9/75 1:30pm T 1975 10 9 13 30 – – –
Mon Feb 28 17:15:49 CST 2000 F 2000 2 28 17 15 49 CST 1
Tue, 02-Mar-99 11:20:32 GMT F 99 3 2 11 20 32 GMT 2
Tue, 02-Mar-99 11:20:32 GMT T 1999 3 2 11 20 32 GMT 2
12-January-1990, 04:00 WET F 1990 1 12 4 0 – WET –
4/3/99 F 99 4 3 – – – – –
4/3/99 T 1999 4 3 – – – – –
10th February, 1976 F 1976 2 10 – – – – –
March 1st, 84 T 1984 3 1 – – – – –
Friday F – – – – – – – 5

Module methods
parsedate ParseDate.parsedate(aString, guessYear=false)

→ [year, mon, mday, hour, min, sec, zone, wday]

Parses a string containing a date and/or a time, returning an array of Fixnum objects
containing the various components. nil is returned for fields that cannot be parsed
from aString. If the result contains a year that is less than 100 and guessYear is true,
parsedatewill return a year value equal to year plus 2000 if year is less than 69, year
plus 1900 otherwise.

P
st

or
e

414 CHAPTER 24. STANDARD LIBRARY

Library profile require "profile"
The profile library prints to $stderr a summary of the number of calls to, and
the time spent in, each method in a Ruby program. The output is sorted by the total
time spent in each method. Profiling can be enabled from the command line using the
-rprofile option, or from within a source program by requiring the profilemodule.

require ’profile’

def ackerman(m, n)

if m == 0 then n+1

elsif n == 0 and m > 0 then ackerman(m-1, 1)

else ackerman(m-1, ackerman(m, n-1))

end

end

ackerman(3,3)

produces:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

74.49 3.30 3.30 2432 1.36 61.96 Object#ackerman

12.64 3.86 0.56 3676 0.15 0.15 Fixnum#==

7.00 4.17 0.31 2431 0.13 0.13 Fixnum#-

5.42 4.41 0.24 1188 0.20 0.20 Fixnum#+

0.45 4.43 0.02 57 0.35 0.35 Fixnum#>

0.00 4.43 0.00 1 0.00 0.00 Module#method_added

0.00 4.43 0.00 1 0.00 4430.00 #toplevel

Class PStore < Object
require "pstore"

The PStore class provides transactional, file-based persistent storage of Ruby objects.
The following example stores two hierarchies in a PStore. The first, identified by the
key “names”, is an array of Strings. The second, identified by “tree”, is a simple
binary tree.

require "pstore"

class T

def initialize(val, left=nil, right=nil)

@val, @left, @right = val, left, right

end

def to_a

[@val, @left.to_a, @right.to_a]

end

end

store = PStore.new("/tmp/store")

store.transaction do

store[’names’] = [’Douglas’, ’Barenberg’, ’Meyer’]

store[’tree’] = T.new(’top’,

T.new(’A’, T.new(’B’)),

T.new(’C’, T.new(’D’, nil, T.new(’E’))))

end

now read it back in

PSTORE 415

P
st

or
e

store.transaction do

puts "Roots: #{store.roots.join(’, ’)}"

puts store[’names’].join(’, ’)

puts store[’tree’].to_a.inspect

end

produces:

Roots: names, tree

Douglas, Barenberg, Meyer

["top", ["A", ["B", [], []], []], ["C", ["D", [], ["E", [], []]], []]]

Each PStore can store several object hierarchies. Each hierarchy has a root, identified
by a key (often a string). At the start of a PStore transaction, these hierarchies are read
from a disk file and made available to the Ruby program. At the end of the transaction,
the hierarchies are written back to the file. Any changes made to objects in these hier-
archies are therefore saved on disk, to be read at the start of the next transaction that
uses that file.

In normal use, a PStore object is created and then is used one or more times to control
a transaction. Within the body of the transaction, any object hierarchies that had pre-
viously been saved are made available, and any changes to object hierarchies, and any
new hierarchies, are written back to the file at the end.

Class methods
new PStore.new(aFilename)→ aPStore

Returns a new PStore object associated with the given file. If the file exists, its contents
must have been previously written by PStore.

Instance methods
[] pStore[anObject]→ anOtherObject

Root Access—Returns the root of an object hierarchy identified by anObject. An excep-
tion is raised if anObject does not identify a root.

[]= pStore[anObject] = anOtherObject→ anOtherObject

Root Creation—Sets anOtherObject as the base of the object hierarchy to be identified
using anObject.

abort pStore.abort

Terminates this transaction, losing any changes made to the object hierarchies.

commit pStore.commit

Terminates the current transaction, saving the object hierarchies into the store’s file.

path pStore.path→ aString

Returns the name of the file associated with this store.

T
em

pfi
le

416 CHAPTER 24. STANDARD LIBRARY

root? pStore.root?(anObject)→ true or false

Returns true if anObject is the key of a root in this store.

roots pStore.roots→ anArray

Returns an array containing the keys of the root objects available in this store.

transaction pStore.transaction {| pStore | block } → anObject

If the file associated with pStore exists, reads in the object hierarchies from it. It then
executes the associated block, passing in pStore. The block may use this parameter to
access the roots of the hierarchies and hence access the persistent objects. If the block
calls PStore#abort, or if it raises an exception, no data is saved back to the associated
file. Otherwise, if it invokes PStore#commit, or if it terminates normally, the object
hierarchies are written back to the file. The value returned is the value returned by the
block.

Class Tempfile < [IO]
require "tempfile"

require "tempfile"

tf = Tempfile.new("afile")

tf.path → "/home/ab/tmp/afile28655.0"

tf.puts("Cosi Fan Tutte") → nil

tf.close → nil

tf.open → #<File:/home/ab/tmp/afile28655.0>

tf.gets → "Cosi Fan Tutte\n"

tf.close(true) → #<File:0x3f9874>

Class Tempfile creates managed temporary files. Although they behave the same as
any other IO objects, temporary files are automatically deleted when the Ruby pro-
gram terminates. Once a Tempfile object has been created, the underlying file may be
opened and closed a number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to a File object.
From the programmer’s perspective, apart from the unusual new, open, and close

semantics, a Tempfile object behaves as if it were an IO object.

Class methods
new Tempfile.new(basename, tmpdir=<see below>)→ aTempfile

Constructs a temporary file in the given directory. The file name is built by concatenat-
ing basename, the current process id and (as an extension) a unique sequence number.
If the tmpdir parameter is not supplied, it defaults to the value of one of the environment
variables TMPDIR, TMP, or TEMP, or to the directory /tmp.

The file is then opened using mode “w+”, which allows reading and writing and deletes
any existing content (see Table 22.5 on page 298).

THREAD 417

T
hr

ea
d

open Tempfile.open(basename, tmpdir)→ aTempfile

Synonym for Tempfile.new.

Instance methods
close aTempfile.close(final=false)

Closes aTempfile. If final is true, deletes the underlying real file. If final is false,
aTempfile may be subsequently reopened. In all cases, the underlying file is deleted
when the program terminates.

open aTempfile.open

Reopens aTempfile using mode “r+”, which allows reading and writing but does not
delete existing content.

path aTempfile.path→ aString

Returns the full path of the underlying file.

Class Mutex < Object
require "thread"

require ’thread’

sema4 = Mutex.new

a = Thread.new {

sema4.synchronize {

access shared resource

}

}

b = Thread.new {

sema4.synchronize {

access shared resource

}

}

Mutex implements a simple semaphore that can be used to coordinate access to shared
data from multiple concurrent threads.

Instance methods
lock aMutex.lock→ aMutex

Attempts to grab the lock and waits if it isn’t available.

locked? aMutex.locked?→ true or false

Returns true if this lock is currently held by some thread.

synchronize aMutex.synchronize { block }→ aMutex

Obtains a lock (using Mutex#lock), runs the block, and releases the lock when the
block completes.

T
hr

ea
d

418 CHAPTER 24. STANDARD LIBRARY

try_lock aMutex.try_lock→ true or false

Attempts to obtain the lock and returns immediately. Returns true if the lock was
granted.

unlock aMutex.unlock→ aMutex or nil

Releases the lock. Returns nil if aMutex wasn’t locked.

Class ConditionVariable < Object
require "thread"

require ’thread’

mutex = Mutex.new

resource = ConditionVariable.new

a = Thread.new {

mutex.synchronize {

Thread ’a’ now needs the resource

resource.wait(mutex)

’a’ can now have the resource

}

}

b = Thread.new {

mutex.synchronize {

Thread ’b’ has finished using the resource

resource.signal

}

}

ConditionVariable objects augment class Mutex. Using condition variables, it is
possible to suspend while in the middle of a critical section until a resource becomes
available (see the discussion on page 111).

Instance methods
broadcast aCond.broadcast

Wakes up all threads waiting for this lock.

signal aCond.signal

Wakes up the first thread in line waiting for this lock.

wait aCond.wait(aMutex)→ aMutex

Releases the lock held in aMutex and waits; reacquires the lock on wakeup.

TIMEOUT 419

W
ea

kr
ef

Library timeout require "timeout"
require "timeout"

for snooze in 1..2

puts "About to sleep for #{snooze}"

timeout(1.5) do

sleep(snooze)

end

puts "That was refreshing"

end

produces:
About to sleep for 1

That was refreshing

About to sleep for 2

/usr/share/ruby/1.7/timeout.rb:37: execution expired (TimeoutError)

from prog.rb:5:in `timeout’

from prog.rb:5

from prog.rb:3:in `each’

from prog.rb:3

The timeout method takes a single parameter, representing a timeout period in sec-
onds, and a block. The block is executed, and a timer is run concurrently. If the block
terminates before the timeout, timeout returns true. Otherwise, a TimeoutError

exception is raised.

Class WeakRef < Delegator
require "weakref"

require "weakref"

ref = "fol de rol"

puts "Initial object is #{ref}"

ref = WeakRef.new(ref)

puts "Weak reference is #{ref}"

ObjectSpace.garbage_collect

puts "But then it is #{ref}"

produces:
Initial object is fol de rol

Weak reference is fol de rol

prog.rb:8: Illegal Reference - probably recycled (WeakRef::RefError)

In Ruby, objects are not eligible for garbage collection if there are still references to
them. Normally, this is a Good Thing—it would be disconcerting to have an object
simply evaporate while you were using it. However, sometimes you may need more
flexibility. For example, you might want to implement an in-memory cache of com-
monly used file contents. As you read more files, the cache grows. At some point, you
may run low on memory. The garbage collector will be invoked, but the objects in the
cache are all referenced by the cache data structures, and so will not be deleted.

A weak reference behaves exactly as any normal object reference with one important
exception—the referenced object may be garbage collected, even while references to
it exist. In the cache example, if the cached files were accessed using weak references,

W
ea

kr
ef

420 CHAPTER 24. STANDARD LIBRARY

once memory runs low they will be garbage collected, freeing memory for the rest of
the application.

Weak references introduce a slight complexity. As the object referenced can be deleted
by garbage collection at any time, code that accesses these objects must take care to
ensure that the references are valid. Two techniques can be used. First, the code can
reference the objects normally. Any attempt to reference an object that has been garbage
collected will raise a WeakRef::RefError exception.

An alternative approach is to use the WeakRef#weakref_alive?method to check that
a reference is valid before using it. Garbage collection must be disabled during the test
and subsequent reference to the object. In a single-threaded program, you could use
something like:

ref = WeakRef.new(someObject)

#

.. some time later

#

gcWasDisabled = GC.disable

if ref.weakref_alive?

do stuff with ’ref’

end

GC.enable unless gcWasDisabled

Class methods
new WeakRef.new(anObject)→ ref

Creates and returns a weak reference to anObject. All future references to anObject
should be made using ref.

Instance methods
weakref_alive? ref.weakref_alive?→ true or false

Returns false if the object referenced by ref has been garbage collected.

Chapter 25

Object-Oriented Design
Libraries

One of the interesting things about Ruby is the way it blurs the distinction between
design and implementation. Ideas that have to be expressed at the design level in other
languages can be implemented directly in Ruby.

To help in this process, Ruby has support for some design-level strategies.

• The Visitor pattern (Design Patterns, [GHJV95]) is a way of traversing a collec-
tion without having to know the internal organization of that collection.

• Delegation is a way of composing classes more flexibly and dynamically than can
be done using standard inheritance.

• The Singleton pattern is a way of ensuring that only one instantiation of a par-
ticular class exists at a time.

• The Observer pattern implements a protocol allowing one object to notify a set
of interested objects when certain changes have occurred.

Normally, all four of these strategies require explicit code each time they’re imple-
mented. With Ruby, they can be abstracted into a library and reused freely and trans-
parently.

Before we get into the proper library descriptions, let’s get the simplest strategy out of
the way.

The Visitor Pattern
It’s the method each.

421

D
el

eg
at

e

422 CHAPTER 25. OBJECT-ORIENTED DESIGN LIBRARIES

Library delegate require "delegate"
Object delegation is a way of composing objects—extending an object with the capabil-
ities of another—at runtime. This promotes writing flexible, decoupled code, as there
are no compile-time dependencies between the users of the overall class and the dele-
gates.

The Ruby Delegator class implements a simple but powerful delegation scheme,
where requests are automatically forwarded from a master class to delegates or their
ancestors, and where the delegate can be changed at runtime with a single method call.

The delegate.rb library provides two mechanisms for allowing an object to forward
messages to a delegate.

1. For simple cases where the class of the delegate is fixed, arrange for the master
class to be a subclass of DelegateClass, passing the name of the class to be
delegated as a parameter (Example 1). Then, in your class’s initializemethod,
you’d call the superclass, passing in the object to be delegated. For example, to
declare a class Fred that also supports all the methods in Flintstone, you’d
write

class Fred < DelegateClass(Flintstone)

def initialize

...

super(Flintstone.new(...))

end

...

end

This is subtly different from using subclassing. With subclassing, there is only one
object, which has the methods and the defined class, its parent, and their ancestors.
With delegation there are two objects, linked so that calls to one may be delegated
to the other.

2. For cases where the delegate needs to be dynamic, make the master class a sub-
class of SimpleDelegator (Example 2). You can also add delegation capabilities
to an existing object using SimpleDelegator (Example 3). In these cases, you
can call the _ _ setobj_ _ method in SimpleDelegator to change the object
being delegated at runtime.

Example 1. Use the DelegateClass method and subclass the result when you need
a class with its own behavior that also delegates to an object of another class. In this
example, we assume that the @sizeInInches array is large, so we want only one copy
of it. We then define a class that accesses it, converting the values to feet.

require ’delegate’

sizeInInches = [10, 15, 22, 120]

class Feet < DelegateClass(Array)

def initialize(arr)

super(arr)

end

def [](*n)

val = super(*n)

DELEGATE 423

D
el

eg
at

e

case val.class

when Numeric; val/12.0

else; val.collect {|i| i/12.0}

end

end

end

sizeInFeet = Feet.new(sizeInInches)

sizeInInches[0..3] → [10, 15, 22, 120]

sizeInFeet[0..3] → [0.8333333333333334, 1.25,

1.833333333333333, 10.0]

Example 2. Use subclass SimpleDelegatorwhen you want an object that both has its
own behavior and delegates to different objects during its lifetime. This is an example
of the State pattern[GHJV95]. Objects of class TicketOffice sell tickets if a seller is
available, or tell you to come back tomorrow if there is no seller.

require ’delegate’

class TicketSeller

def sellTicket()

return ’Here is a ticket’

end

end

class NoTicketSeller

def sellTicket()

"Sorry-come back tomorrow"

end

end

class TicketOffice < SimpleDelegator

def initialize

@seller = TicketSeller.new

@noseller = NoTicketSeller.new

super(@seller)

end

def allowSales(allow = true)

__setobj__(allow ? @seller : @noseller)

allow

end

end

to = TicketOffice.new

to.sellTicket → "Here is a ticket"

to.allowSales(false) → false

to.sellTicket → "Sorry-come back tomorrow"

to.allowSales(true) → true

to.sellTicket → "Here is a ticket"

Example 3. Create SimpleDelegator objects when you want a single object to dele-
gate all its methods to two or more other objects.

O
bs

er
ve

r

424 CHAPTER 25. OBJECT-ORIENTED DESIGN LIBRARIES

Example 3 - delegate from existing object

seller = TicketSeller.new

noseller = NoTicketSeller.new

to = SimpleDelegator.new(seller)

to.sellTicket → "Here’s a ticket"

to.sellTicket → "Here’s a ticket"

to.__setobj__(noseller)

to.sellTicket → "Sorry-come back tomorrow"

to.__setobj__(seller)

to.sellTicket → "Here’s a ticket"

Library observer require "observer"
The Observer pattern[GHJV95], also known as Publish/Subscribe, provides a simple
mechanism for one object to inform a set of interested third-party objects when its state
changes.

In the Ruby implementation, the notifying class mixes in the Observable module,
which provides the methods for managing the associated observer objects.

add_observer(obj) Add obj as an observer on this object. obj will now receive
notifications.

delete_observer(obj) Delete obj as an observer on this object. It will no longer
receive notifications.

delete_observers Delete all observers associated with this object.
count_observers Return the count of observers associated with this object.
changed(newState=true) Set the changed state of this object. Notifications will be

sent only if the changed state is true.
changed? Query the changed state of this object.
notify_observers(*args) If this object’s changed state is true, invoke the update

method in each currently associated observer in turn, pass-
ing it the given arguments. The changed state is then set to
false.

The observers must implement the update method to receive notifications.

require "observer"

class Ticker # Periodically fetch a stock price

include Observable

def initialize(symbol)

@symbol = symbol

end

def run

lastPrice = nil

loop do

price = Price.fetch(@symbol)

print "Current price: #{price}\n"

if price != lastPrice

changed # notify observers

lastPrice = price

notify_observers(Time.now, price)

OBSERVER 425

O
bs

er
ve

r

end

end

end

end

class Warner

def initialize(ticker, limit)

@limit = limit

ticker.add_observer(self) # all warners are observers

end

end

class WarnLow < Warner

def update(time, price) # callback for observer

if price < @limit

print "--- #{time.to_s}: Price below #@limit: #{price}\n"

end

end

end

class WarnHigh < Warner

def update(time, price) # callback for observer

if price > @limit

print "+++ #{time.to_s}: Price above #@limit: #{price}\n"

end

end

end

ticker = Ticker.new("MSFT")

WarnLow.new(ticker, 80)

WarnHigh.new(ticker, 120)

ticker.run

produces:
Current price: 83

Current price: 75

--- Thu Dec 26 20:05:51 MSK 2002: Price below 80: 75

Current price: 90

Current price: 134

+++ Thu Dec 26 20:05:51 MSK 2002: Price above 120: 134

Current price: 134

Current price: 112

Current price: 79

--- Thu Dec 26 20:05:51 MSK 2002: Price below 80: 79

S
in

gl
et

on

426 CHAPTER 25. OBJECT-ORIENTED DESIGN LIBRARIES

Library singleton require "singleton"
The Singleton design pattern[GHJV95] ensures that only one instance of a particular
class may be created.

The singleton library makes this simple to implement. Mix the Singleton module
into each class that is to be a singleton, and that class’s new method will be made
private. In its place, users of the class call the method instance, which returns a
singleton instance of that class.

In this example, the two instances of MyClass are the same object.

require ’singleton’

class MyClass

include Singleton

end

a = MyClass.instance → #<MyClass:0x38de04>

b = MyClass.instance → #<MyClass:0x38de04>

Chapter 26

Network and Web Libraries

Ruby provides two levels of access to network services. At a low level, you can access
the basic socket support in the underlying operating system, which allows you to imple-
ment clients and servers for both connection-oriented and connectionless protocols.
These are documented in the next section.

Ruby also has libraries that provide higher-level access to specific application-level
network protocols, such as FTP, HTTP, and so on. These are documented starting on
page 439.

Finally, the CGI libraries, documented beginning on page 452, provide server-side
developers with a convenient interface for developing Web applications.

Socket-Level Access
Sockets are the endpoints of a bidirectional communications channel. Sockets may
communicate within a process, between processes on the same machine, or between
processes on different continents. Sockets may be implemented over a number of dif-
ferent channel types: Unix domain sockets, TCP, UDP, and so on. The socket library
provides specific classes for handling the common transports as well as a generic inter-
face for handling the rest. All functionality in the socket library is accessible through a
single extension library. Access it using

require ’socket’

Sockets have their own vocabulary:

domain The family of protocols that will be used as the transport mechanism. These
values are constants such as PF_INET, PF_UNIX, PF_X25, and so on.

type The type of communications between the two endpoints, typically SOCK_STREAM
for connection-oriented protocols and SOCK_DGRAM for connectionless protocols.

protocol Typically zero, this may be used to identify a variant of a protocol within a
domain and type.

hostName The identifier of a network interface:

427

S
oc

ke
t

428 CHAPTER 26. NETWORK AND WEB LIBRARIES

• a string, which can be a host name, a dotted-quad address, or an IPV6 address
in colon (and possibly dot) notation,

• the string “<broadcast>”, which specifies an INADDR_BROADCAST address,

• a zero-length string, which specifies INADDR_ANY, or

• an Integer, interpreted as a binary address in host byte order.

port (sometimes called service) Each server listens for clients calling on one or more
ports. A port may be a Fixnum port number, a string containing a port number, or
the name of a service.

Sockets are children of class IO. Once a socket has been successfully opened, the con-
ventional I/O methods may be used. However, greater efficiency is sometimes obtained
by using socket-specific methods. As with other I/O classes, socket I/O blocks by
default. The hierarchy of the socket classes is shown in Figure 26.1 on the facing page.

For more information on the use of sockets, see your operating system documenta-
tion. You’ll also find a comprehensive treatment in W. Richard Stevens, Unix Network
Programming, Volumes 1 and 2 [Ste98a, Ste98b].

Class BasicSocket < IO
require "socket"

BasicSocket is an abstract base class for all other socket classes.

This class and its subclasses often manipulate addresses using something called a
struct sockaddr, which is effectively an opaque binary string.1

Class methods
do_not_reverse_lookup BasicSocket.do_not_reverse_lookup→ true or false

Returns the value of the global reverse lookup flag. If set to true, queries on remote
addresses will return the numeric address but not the host name.

do_not_reverse_lookup= BasicSocket.do_not_reverse_lookup = true or false

Sets the global reverse lookup flag.

lookup_order BasicSocket.lookup_order→ aFixnum

Returns the global address lookup order, one of:

Order Families Searched

LOOKUP_UNSP AF_UNSPEC

LOOKUP_INET AF_INET, AF_INET6, AF_UNSPEC
LOOKUP_INET6 AF_INET6, AF_INET, AF_UNSPEC

1. In reality, it maps onto the underlying C-language struct sockaddr set of structures, documented
in the man pages and in the books by Stevens.

SOCKET 429

S
oc

ke
t

Figure 26.1. Socket class hierarchy

BasicSocket

IPSocket

TCPSocket

SOCKSSocket

TCPServer

UDPSocket

UNIXSocket

UNIXServer

Socket

lookup_order= BasicSocket.lookup_order = aFixnum

Sets the global address lookup order.

Instance methods
close_read sock.close_read→ nil

Closes the readable connection on this socket.

close_write sock.close_write→ nil

Closes the writable connection on this socket.

getpeername sock.getpeername→ aString

Returns the struct sockaddr structure associated with the other end of this socket
connection.

getsockname sock.getsockname→ aString

Returns the struct sockaddr structure associated with sock.

getsockopt sock.getsockopt(level, optname)→ aString

Returns the value of the specified option.

recv sock.recv(len, 〈 , flags 〉)→ aString

Receives up to len bytes from sock.

send sock.send(aString, flags, 〈 , to 〉)→ aFixnum

Sends aString over sock. If specified, to is a struct sockaddr specifying the recipient
address. flags are the sum or one or more of the MSG_ options (listed on page 435).
Returns the number of characters sent.

setsockopt sock.setsockopt(level, optname, optval)→ 0

Sets a socket option. level is one of the socket-level options (listed on page 436). opt-
name and optval are protocol specific—see your system documentation for details.

S
oc

ke
t

430 CHAPTER 26. NETWORK AND WEB LIBRARIES

shutdown sock.shutdown(how=2)→ 0

Shuts down the receive (how == 0), or send (how == 1), or both (how == 2), parts of
this socket.

Class IPSocket < BasicSocket
require "socket"

Class IPSocket is a base class for sockets using IP as their transport. TCPSocket and
UDPSocket are based on this class.

Class methods
getaddress IPSocket.getaddress(hostName)→ aString

Returns the dotted-quad IP address of hostName.

a = IPSocket.getaddress(’www.ruby-lang.org’)

a → "210.251.121.214"

Instance methods
addr sock.addr→ anArray

Returns the domain, port, name, and IP address of sock as a four-element array. The
name will be returned as an address if the do_not_reverse_lookup flag is true.

u = UDPSocket.new

u.bind(’localhost’, 8765)

u.addr → ["AF_INET", 8765, "localhost.localdomain", "127.0.0.1"]

BasicSocket.do_not_reverse_lookup = true

u.addr → ["AF_INET", 8765, "127.0.0.1", "127.0.0.1"]

peeraddr sock.peeraddr→ anArray

Returns the domain, port, name, and IP address of the peer.

Class TCPSocket < IPSocket
require "socket"

t = TCPSocket.new(’localhost’, ’ftp’)

t.gets

t.close

Class methods
gethostbyname TCPSocket.gethostbyname(hostName)→ anArray

Looks up hostName and returns its canonical name, an array containing any aliases, the
address type (AF_INET), and the dotted-quad IP address.

a = TCPSocket.gethostbyname(’ns.pragprog.com’)

a → ["pragdave211.august.net", [], 2, "216.87.136.211"]

SOCKET 431

S
oc

ke
t

new TCPSocket.new(hostName, port)→ sock

Opens a TCP connection to hostName on the port.

open TCPSocket.open(hostName, port)→ sock

Synonym for TCPSocket.new.

Instance methods
recvfrom sock.recvfrom(len 〈 , flags 〉)→ anArray

Receives up to len bytes on the connection. flags is zero or more of the MSG_ options
(listed on page 435). Returns a two-element array. The first element is the received data,
the second is an array containing information about the peer.

t = TCPSocket.new(’localhost’, ’ftp’)

data = t.recvfrom(30)

data

Class SOCKSSocket < TCPSocket
require "socket"

Class SOCKSSocket supports connections based on the SOCKS protocol.

Class methods
new SOCKSSocket.new(hostName, port)→ sock

Opens a SOCKS connection to port on hostName.

open SOCKSSocket.open(hostName, port)→ sock

Synonym for SOCKSSocket.new.

Instance methods
close sock.close→ nil

Closes this SOCKS connection.

S
oc

ke
t

432 CHAPTER 26. NETWORK AND WEB LIBRARIES

Class TCPServer < TCPSocket
require "socket"

A TCPServer accepts incoming TCP connections. Here is a Web server that listens on
a given port and returns the time.

require ’socket’

port = (ARGV[0] || 80).to_i

server = TCPServer.new(’localhost’, port)

while (session = server.accept)

puts "Request: #{session.gets}"

session.print "HTTP/1.1 200/OK\r\nContent-type: text/html\r\n\r\n"

session.print "<html><body><h1>#{Time.now}</h1></body></html>\r\n"

session.close

end

Class methods
new TCPServer.new(〈 hostName, 〉 port)→ sock

Creates a new socket on the given interface (identified by hostName and port). If host-
Name is omitted, the server will listen on all interfaces on the current host (equivalent
to an address of 0.0.0.0).

open TCPServer.open(〈 hostName, 〉 port)→ sock

Synonym for TCPServer.new.

Instance methods
accept sock.accept→ aTCPSocket

Waits for a connection on sock, and returns a new TCPSocket connected to the caller.
See the example on this page.

Class UDPSocket < IPSocket
require "socket"

UDP sockets send and receive datagrams. In order to receive data, a socket must be
bound to a particular port. You have two choices when sending data: you can connect
to a remote UDP socket and thereafter send datagrams to that port, or you can specify
a host and port for use with every packet you send. This example is a UDP server that
prints the message it receives. It is called by both connectionless and connection-based
clients.

require ’socket’

$port = 4321

sThread = Thread.start do # run server in a thread

server = UDPSocket.open

server.bind(nil, $port)

2.times { p server.recvfrom(64) }

end

Ad-hoc client

UDPSocket.open.send("ad hoc", 0, ’localhost’, $port)

SOCKET 433

S
oc

ke
t

Connection based client

sock = UDPSocket.open

sock.connect(’localhost’, $port)

sock.send("connection-based", 0)

sThread.join

produces:
["ad hoc", ["AF_INET", 1037, "localhost.localdomain", "127.0.0.1"]]

["connection-based", ["AF_INET", 1038, "localhost.localdomain", "127.0.0.1"]]

Class methods
new UDPSocket.new(family = AF_INET)→ sock

Creates an endpoint for UDP communications, optionally specifying the address fam-
ily.

open UDPSocket.open(family = AF_INET)→ sock

Synonym for UDPSocket.new.

Instance methods
bind sock.bind(hostName, port)→ 0

Associates the local end of the UDP connection with a given hostName and port. Must
be used by servers to establish an accessible endpoint.

connect sock.connect(hostName, port)→ 0

Creates a connection to the given hostName and port. Subsequent UDPSocket#send
requests that don’t override the recipient will use this connection. Multiple connect

requests may be issued on sock: the most recent will be used by send.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ anArray

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on
page 435). The result is a two-element array containing the received data and informa-
tion on the sender. See the example on the facing page.

send sock.send(aString, flags)→ aFixnum
sock.send(aString, flags, hostName, port)→ aFixnum

The two-parameter form sends aString on an existing connection. The four-parameter
form sends aString to port on hostName.

S
oc

ke
t

434 CHAPTER 26. NETWORK AND WEB LIBRARIES

Class UNIXSocket < BasicSocket
require "socket"

Class UNIXSocket supports interprocess communications using the Unix domain pro-
tocol. Although the underlying protocol supports both datagram and stream connec-
tions, the Ruby library provides only a stream-based connection.

require ’socket’

$path = "/tmp/sample"

sThread = Thread.start do # run server in a thread

sock = UNIXServer.open($path)

s1 = sock.accept

p s1.recvfrom(124)

end

client = UNIXSocket.open($path)

client.send("hello", 0)

client.close

sThread.join

produces:
["hello", ["AF_UNIX", ""]]

Class methods
new UNIXSocket.new(path)→ sock

Opens a new domain socket on path, which must be a pathname.

open UNIXSocket.open(path)→ sock

Synonym for UNIXSocket.new.

Instance methods
addr sock.addr→ anArray

Returns the address family and path of this socket.

path sock.path→ aString

Returns the path of this domain socket.

peeraddr sock.peeraddr→ anArray

Returns the address family and path of the server end of the connection.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ anArray

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed
on the next page). The first element of the returned array is the received data, and the
second contains (minimal) information on the sender.

SOCKET 435

S
oc

ke
t

Class UNIXServer < UNIXSocket
require "socket"

Class UNIXServer provides a simple Unix domain socket server. See UNIXSocket for
example code.

Class methods
new UNIXServer.new(path)→ sock

Creates a server on the given path. The corresponding file must not exist at the time of
the call.

open UNIXServer.open(path)→ sock

Synonym for UNIXServer.new.

Instance methods
accept sock.accept→ aUnixSocket

Waits for a connection on the server socket and returns a new socket object for that
connection. See the example for UNIXSocket on the facing page.

Class Socket < BasicSocket
require "socket"

Class Socket provides access to the underlying operating system socket implementa-
tion. It can be used to provide more operating system-specific functionality than the
protocol-specific socket classes, but at the expense of greater complexity. In particu-
lar, the class handles addresses using struct sockaddr structures packed into Ruby
strings, which can be a joy to manipulate.

Class constants

Class Socket defines constants for use throughout the socket library. Individual con-
stants are available only on architectures that support the related facility.

Types:
SOCK_DGRAM, SOCK_PACKET, SOCK_RAW, SOCK_RDM, SOCK_SEQPACKET, SOCK_STREAM.

Protocol families:
PF_APPLETALK, PF_AX25, PF_INET6, PF_INET, PF_IPX, PF_UNIX, PF_UNSPEC.

Address families:
AF_APPLETALK, AF_AX25, AF_INET6, AF_INET, AF_IPX, AF_UNIX, AF_UNSPEC.

Lookup-order options:
LOOKUP_INET6, LOOKUP_INET, LOOKUP_UNSPEC.

Send/receive options:
MSG_DONTROUTE, MSG_OOB, MSG_PEEK.

S
oc

ke
t

436 CHAPTER 26. NETWORK AND WEB LIBRARIES

Socket-level options:
SOL_ATALK, SOL_AX25, SOL_IPX, SOL_IP, SOL_SOCKET, SOL_TCP, SOL_UDP.

Socket options:
SO_BROADCAST, SO_DEBUG, SO_DONTROUTE, SO_ERROR, SO_KEEPALIVE, SO_LINGER,
SO_NO_CHECK, SO_OOBINLINE, SO_PRIORITY, SO_RCVBUF, SO_REUSEADDR,
SO_SNDBUF, SO_TYPE.

QOS options:
SOPRI_BACKGROUND, SOPRI_INTERACTIVE, SOPRI_NORMAL.

Multicast options:
IP_ADD_MEMBERSHIP, IP_DEFAULT_MULTICAST_LOOP, IP_DEFAULT_MULTICAST_TTL,
IP_MAX_MEMBERSHIPS, IP_MULTICAST_IF, IP_MULTICAST_LOOP,
IP_MULTICAST_TTL.

TCP options:
TCP_MAXSEG, TCP_NODELAY.

getaddrinfo error codes:
EAI_ADDRFAMILY, EAI_AGAIN, EAI_BADFLAGS, EAI_BADHINTS, EAI_FAIL,
EAI_FAMILY, EAI_MAX, EAI_MEMORY, EAI_NODATA, EAI_NONAME, EAI_PROTOCOL,
EAI_SERVICE, EAI_SOCKTYPE, EAI_SYSTEM.

ai_flags values:
AI_ALL, AI_CANONNAME, AI_MASK, AI_NUMERICHOST, AI_PASSIVE,
AI_V4MAPPED_CFG.

Class methods
for_fd Socket.for_fd(anFD)→ sock

Wraps an already open file descriptor into a socket object.

getaddrinfo Socket.getaddrinfo(hostName, port,
〈 family 〈 , socktype 〈 , protocol 〈 , flags 〉 〉 〉 〉)→ anArray

Returns an array of arrays describing the given host and port (optionally qualified as
shown). Each subarray contains the address family, port number, host name, host IP
address, protocol family, socket type, and protocol.

for line in Socket.getaddrinfo(’www.microsoft.com’, ’http’)

puts line.join(", ")

end

produces:
AF_INET, 80, microsoft.net, 207.46.130.149, 2, 1, 6

AF_INET, 80, microsoft.net, 207.46.131.137, 2, 1, 6

AF_INET, 80, microsoft.com, 207.46.230.218, 2, 1, 6

AF_INET, 80, microsoft.com, 207.46.230.219, 2, 1, 6

AF_INET, 80, microsoft.net, 207.46.130.14, 2, 1, 6

gethostbyaddr Socket.gethostbyaddr(addr, type=AF_INET)→ anArray

Returns the host name, address family, and sockaddr component for the given address.

SOCKET 437

S
oc

ke
t

a = Socket.gethostbyname("216.87.136.211")

res = Socket.gethostbyaddr(a[3], a[2])

res.join(’, ’) → "pragdave211.august.net, , 2, \330W\210\323"

gethostbyname Socket.gethostbyname(hostName)→ anArray

Returns a four-element array containing the canonical host name, a subarray of host
aliases, the address family, and the address portion of the sockaddr structure.

a = Socket.gethostbyname("216.87.136.211")

a.join(’, ’) → "pragdave211.august.net, , 2, \330W\210\323"

gethostname sock.gethostname→ aString

Returns the name of the current host.

getnameinfo Socket.getnameinfo(addr 〈 , flags 〉)→ anArray

Looks up the given address, which may be either a string containing a sockaddr or a
three- or four-element array. If sockaddr is an array, it should contain the string address
family, the port (or nil), and the host name or IP address. If a fourth element is present
and not nil, it will be used as the host name. Returns a canonical hostname (or address)
and port number as an array.

a = Socket.getnameinfo(["AF_INET", ’23’, ’www.ruby-lang.org’])

a → ["helium.ruby-lang.org", "telnet"]

getservbyname Socket.getservbyname(service, proto=’tcp’)→ aFixnum

Returns the port corresponding to the given service and protocol.

Socket.getservbyname("telnet") → 23

new Socket.new(domain, type, protocol)→ sock

Creates a socket using the given parameters.

open Socket.open(domain, type, protocol)→ sock

Synonym for Socket.new.

pair Socket.pair(domain, type, protocol)→ anArray

Returns a pair of connected, anonymous sockets of the given domain, type, and proto-
col.

socketpair Socket.socketpair(domain, type, protocol)→ anArray

Synonym for Socket.pair.

S
oc

ke
t

438 CHAPTER 26. NETWORK AND WEB LIBRARIES

Instance methods
accept sock.accept→ anArray

Accepts an incoming connection returning an array containing a new Socket object
and a string holding the struct sockaddr information about the caller.

bind sock.bind(sockaddr)→ 0

Binds to the given struct sockaddr, contained in a string.

connect sock.connect(sockaddr)→ 0

Connects to the given struct sockaddr, contained in a string.

listen sock.listen(aFixnum)→ 0

Listens for connections, using the specified aFixnum as the backlog.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ anArray

Receives up to len bytes from sock. flags is zero or more of the MSG_ options. The first
element of the result is the data received. The second element contains protocol-specific
information on the sender.

HIGHER-LEVEL ACCESS 439

N
et

/ft
p

Higher-Level Access
Ruby provides a set of classes to facilitate writing clients for:

• File Transfer Protocol (FTP)

• HyperText Transfer Protocol (HTTP)

• Post Office Protocol (POP)

• Simple Mail Transfer Protocol (SMTP)

• Telnet

HTTP, POP, and SMTP are layered on top of a helper class, lib/net/protocol.
Although we don’t document the Protocol class here, you should probably study
it if you are considering writing your own network client.

Class Net::FTP < Object
require "net/ftp"

require ’net/ftp’

ftp = Net::FTP.new(’ftp.netlab.co.jp’)

ftp.login

files = ftp.chdir(’pub/lang/ruby/contrib’)

files = ftp.list(’n*’)

ftp.getbinaryfile(’nif.rb-0.91.gz’, ’nif.gz’, 1024)

ftp.close

The net/ftp library implements a File Transfer Protocol (FTP) client.

Class constants

FTP_PORT Default port for FTP connections (21).

Class methods
new FTP.new(host=nil, user=nil, passwd=nil, acct=nil)→ ftp

Creates and returns a new FTP object. If the host parameter is not nil, a connection is
made to that host. Additionally, if the user parameter is not nil, the given user name,
password, and (optionally) account are used to log in. See the description of FTP#login
on page 441.

open FTP.open(host, user=nil, passwd=nil, acct=nil)→ ftp

A synonym for FTP.new, but with a mandatory host parameter.

N
et

/ft
p

440 CHAPTER 26. NETWORK AND WEB LIBRARIES

Instance methods
Server commands ftp.acct(account)

ftp.chdir(dir)
ftp.delete(remoteFile)

ftp.mdtm(remoteFile)→ aString
ftp.mkdir(dir)

ftp.nlst(dir=nil)→ anArray
ftp.rename(fromname, toname)

ftp.rmdir(dir)
ftp.pwd→ aString

ftp.size(remoteFile)→ anInteger
ftp.status→ aString

ftp.system→ aString

Issues the corresponding server command and returns the result.

close ftp.close

Closes the current connection.

closed? ftp.closed?→ true or false

Returns true if the current connection is closed.

connect ftp.connect(host, port=FTP_PORT)

Establishes an FTP connection to host, optionally overriding the default port. If the
environment variable SOCKS_SERVER is set, sets up the connection through a SOCKS
proxy. Raises an exception (typically Errno::ECONNREFUSED) if the connection can-
not be established.

debug_mode ftp.debug_mode→ true or false

Returns the current debug mode.

debug_mode= ftp.debug_mode = true or false

If the debug mode is true, all traffic to and from the server is written to $stdout.

dir ftp.dir(〈 pattern 〉∗)→ anArray
ftp.dir(〈 pattern 〉∗) {| line | block }

Synonym for FTP#list.

getbinaryfile ftp.getbinaryfile(remotefile, localfile, blocksize, callback=nil)
ftp.getbinaryfile(remotefile, localfile, blocksize) {| data | block }

Retrieves remotefile in binary mode, storing the result in localfile. If callback or an
associated block is supplied, calls it, passing in the retrieved data in blocksize chunks.

NET/FTP 441

N
et

/ft
p

gettextfile ftp.gettextfile(remotefile, localfile, callback=nil)
ftp.gettextfile(remotefile, localfile) {| data | block }

Retrieves remotefile in ASCII (text) mode, storing the result in localfile. If callback or
an associated block is supplied, calls it, passing in the retrieved data one line at a time.

lastresp ftp.lastresp→ aString

Returns the host’s last response.

list ftp.list(〈 pattern 〉∗)→ anArray
ftp.list(〈 pattern 〉∗) {| line | block }

Fetches a directory listing of files matching the given pattern(s). If a block is associated
with the call, invokes it with each line of the result. Otherwise, returns the result as an
array of strings.

login ftp.login(user="anonymous", passwd=nil, acct=nil)→ aString

Logs into the remote host. ftp must have been previously connected. If user is the string
“anonymous” and the password is nil, a password of user@host is synthesized. If the
acct parameter is not nil, an FTP ACCT command is sent following the successful
login. Raises an exception on error (typically Net::FTPPermError).

ls ftp.ls(〈 pattern 〉∗)→ anArray
ftp.ls(〈 pattern 〉∗) {| line | block }

Synonym for FTP#list.

mtime ftp.mtime(remoteFile, local=false)→ aTime

Returns the last-modified time of remoteFile, interpreting the server’s response as a
GMT time if local is false, or as a local time otherwise.

passive ftp.passive→ true or false

Returns the state of the passive flag.

passive= ftp.passive = true or false

Puts the connection into passive mode if true.

putbinaryfile ftp.putbinaryfile(localfile, remotefile, blocksize, callback=nil)
ftp.putbinaryfile(localfile, remotefile, blocksize) {| data | block }

Transfers localfile to the server in binary mode, storing the result in remotefile. If call-
back or an associated block is supplied, calls it, passing in the transmitted data in block-
size chunks.

puttextfile ftp.puttextfile(localfile, remotefile, callback=nil)
ftp.puttextfile(localfile, remotefile, blocksize) {| data | block }

Transfers localfile to the server in ASCII (text) mode, storing the result in remotefile.
If callback or an associated block is supplied, calls it, passing in the transmitted data
one line at a time.

N
et

/ft
p

442 CHAPTER 26. NETWORK AND WEB LIBRARIES

resume ftp.resume→ true or false

Returns the status of the resume flag (see FTP#resume=). Default is false.

resume= ftp.resume=aBoolean

Sets the status of the resume flag. When resume is true, partially received files will
resume where they left off, instead of starting from the beginning again. This is done
by sending a REST command (RESTart incomplete transfer) to the server.

retrbinary ftp.retrbinary(cmd, blocksize) {| data | block }

Puts the connection into binary (image) mode, issues the given command, and fetches
the data returned, passing it to the associated block in chunks of blocksize characters.
Note that cmd is a server command (such as “RETR myfile”).

retrlines ftp.retrlines(cmd) {| line | block }

Puts the connection into ASCII (text) mode, issues the given command, and passes the
resulting data, one line at a time, to the associated block. If no block is given, prints the
lines. Note that cmd is a server command (such as “RETR myfile”).

return_code ftp.return_code→ aFixnum

Returns the return code from the last operation.

storbinary ftp.storbinary(cmd, fileName, blocksize, callback=nil)
ftp.storbinary(cmd, fileName, blocksize) {| data | block }

Puts the connection into binary (image) mode, issues the given server-side command
(such as “STOR myfile”), and sends the contents of the file named fileName to the
server. If the optional block is given, or if the callBack parameter is a Proc, also passes
it the data, in chunks of blocksize characters.

storlines ftp.storlines(cmd, fileName, callback=nil)
ftp.storlines(cmd, fileName) {| data | block }

Puts the connection into ASCII (text) mode, issues the given server-side command
(such as “STOR myfile”), and sends the contents of the file named fileName to the
server, one line at a time. If the optional block is given, or if the callBack parameter is
a Proc, also passes it the lines.

welcome ftp.welcome→ aString

Returns the host’s welcome message.

NET/HTTP 443

N
et

/h
ttp

Class Net::HTTP < Net::Protocol
require "net/http"

require ’net/http’

h = Net::HTTP.new(’www.pragmaticprogrammer.com’, 80)

resp, data = h.get(’/index.html’, nil)

puts "Code = #{resp.code}"

puts "Message = #{resp.message}"

resp.each {|key, val| printf "%-14s = %-40.40s\n", key, val }

p data[0..55]

The net/http library provides a simple client to fetch headers and Web page contents
using the HTTP protocol.

The get, post, and head requests raise exceptions on any error, including some HTTP
status responses that would normally be considered recoverable. There are two ways of
handling these.

1. Each method has a corresponding version get2, post2, or head2 that does not
raise an exception. These versions are documented in the source.

2. Recoverable errors raise a Net::ProtoRetriableError exception. This excep-
tion contains a data attribute containing the response returned by the server.

The code below illustrates the handling of an HTTP status 301, a redirect. It uses
Tomoyuki Kosimizu’s URI package, available in the RAA.

h = Net::HTTP.new(ARGV[0] || ’www.ruby-lang.org’, 80)

url = ARGV[1] || ’/’

begin

resp, data = h.get(url, nil) { |a| }

rescue Net::ProtoRetriableError => detail

head = detail.data

if head.code == "301"

uri = URI.create(head[’location’])

host = uri[’host’]

url = uri[’path’]

port = uri[’port’]

h.finish

h = Net::HTTP.new(host, port)

retry

end

end

Class methods
new Net::HTTP.new(host=’localhost’, port=80, proxy=nil, proxy_port=nil)→ http

Creates and returns a new HTTP object. No connection is made until HTTP#start is
called.

port Net::HTTP.port→ aFixnum

Returns the default HTTP port (80).

N
et

/h
ttp

444 CHAPTER 26. NETWORK AND WEB LIBRARIES

start Net::HTTP.start(host=nil, port=80)
Net::HTTP.start(host=nil, port=80) {| http | block }

Equivalent to Net::HTTP.new(host, port).start.

Instance methods
get http.get(path, headers=nil, dest="")→ anArray

http.get(path, headers=nil) {| result | block } → anArray

Retrieves headers and content from the specified path on the host specified when http
was created. If specified, the headers parameter is a Hash containing additional header
names and values to be sent with the request. The method returns a two-element array.
The first element is an HTTPResponse object (documented in the next section). The
second element is the page’s content. The page’s content is also passed to the < <

method of the dest parameter, or to the block if specified. This result is built network
block by network block, not line by line. An exception is raised if an error is encoun-
tered. Multiple get calls may be made on http. Unless Protocol#finish is explicitly
called, the connection will use the HTTP/1.1 keep-alive protocol, and will not close
between requests.

head http.head(path, headers=nil)→ aHash

Retrieves headers from the specified path on the host specified when http was created.
If specified, the headers parameter is a hash containing additional header names and
values to be sent with the request. The method returns a hash of received headers. An
exception is raised if an error is encountered. Multiple head calls may be made on http.

post http.post(path, data, headers=nil, dest="")→ anArray
http.post(path, data, headers=nil) {| result | block } → anArray

Sends data to path using an HTTP POST request. headers is a hash containing addi-
tional headers. Assigns the result to data or to the block, as for Net::HTTP#get.
Returns a two-element array containing an HTTPResponse object and the reply body.

start http.start
http.start {| http | block }

Establishes a connection to the host associated with http. (start is actually a method
in Net::Protocol, but its use is required in HTTP objects.) In the block form, closes
the session at the end of the block.

NET/POP 445

N
et

/p
op

Class Net::HTTPResponse require "net/http"
Represents an HTTP response to a GET or POST request.

Instance methods
[] resp[aKey]→ aString

Returns the header corresponding to the case-insensitive key. For example, a key of
“Content-type” might return “text/html”.

[]= resp[aKey] = aString

Sets the header corresponding to the case-insensitive key.

code resp.code→ aString

Returns the result code from the request (for example, “404”).

each resp.each {| key, val | block }

Iterates over all the header key-value pairs.

key? resp.key?(aKey)→ true or false

Returns true only if a header with the given key exists.

message resp.message→ aString

Returns the result message from the request (for example, “Not found”).

Class Net::POP < Net::Protocol
require "net/pop"

require ’net/pop’

pop = Net::POP3.new(’server.ruby-stuff.com’)

pop.start(’user’, ’secret’) do |pop|

msg = pop.mails[0]

Print the ’From:’ header line

puts msg.header.split("\r\n").grep(/^From: /)

Put message to $stdout (by calling <<)

puts "\nFull message:\n"

msg.all($stdout)

end

produces:

From: dummy msg for Andy

Full message:

From: dummy msg for Andy

looks-better: on dave’s box

That’s all folks!

N
et

/p
op

446 CHAPTER 26. NETWORK AND WEB LIBRARIES

The net/pop library provides a simple client to fetch and delete mail on a Post Office
Protocol (POP) server.

The class Net::POP3 is used to access a POP server, returning a list of Net::POPMail
objects, one per message stored on the server. These POPMail objects are then used to
fetch and/or delete individual messages. The library also provides an alternative to the
POP3 class that performs APOP authentication.

Class methods
new HTTP.new(host=’localhost’, port=110)→ pop

Creates and returns a new POP3 object. No connection is made until POP3#start is
called.

Instance methods
each pop.each {| popmail | block }

Calls the associated block once for each e-mail stored on the server, passing in the
corresponding POPMail object.

finish pop.finish→ true or false

Closes the pop connection. Some servers require that a connection is closed before they
honor actions such as deleting mail. Returns false if the connection was never used.

mails pop.mails→ anArray

Returns an array of POPMail objects, where each object corresponds to an e-mail mes-
sage stored on the server.

start pop.start(user, password)
pop.start(user, password) {| pop | block }

Establishes a connection to the pop server, using the supplied username and password.
Fetches a list of mail held on the server, which may be accessed using the POP3#mails
and POP3#each methods. In block form, passes pop to the block, and closes the con-
nection using finish when the block terminates.

NET/POP 447

N
et

/p
op

Class Net::APOP < Net::POP3
require "net/pop"

Instance methods
start apop.start(user, password)

Establishes a connection to the APOP server.

Class Net::POPMail < Object
require "net/pop"

Instance methods
all mail.all→ aString

mail.all(dest)
mail.all {| aString | block }

Fetches the corresponding e-mail from the server. With no argument or associated
block, returns the e-mail as a string. With an argument but no block, appends the e-
mail to dest by invoking dest< < for each line in the e-mail. With an associated block,
invokes the block once for each line in the e-mail.

delete mail.delete

Deletes the e-mail from the server.

delete! mail.delete!

Synonym for POPMail#delete.

header mail.header→ aString

Returns the header lines for the corresponding e-mail message.

size mail.size→ aFixnum

Returns the size in bytes of the corresponding e-mail.

top mail.top(lines)→ aString

Returns the header lines, plus lines message lines for the corresponding e-mail mes-
sage.

uidl mail.uidl→ aString

Returns the server-specific unique identifier for the corresponding e-mail.

N
et

/s
m

tp

448 CHAPTER 26. NETWORK AND WEB LIBRARIES

Class Net::SMTP < Net::Protocol
require "net/smtp"

require ’net/smtp’

--- Send using class methods

msg = ["Subject: Test\n", "\n", "Now is the time\n"]

Net::SMTP.start do |smtp|

smtp.sendmail(msg, ’dave@localhost’, [’dave’])

end

--- Send using SMTP object and an adaptor

smtp = Net::SMTP.new

smtp.start(’pragprog.com’)

smtp.ready(’dave@localhost’, ’dave’) do |a|

a.write "Subject: Test1\r\n"

a.write "\r\n"

a.write "And so is this"

end

The net/smtp library provides a simple client to send electronic mail using the Simple
Mail Transfer Protocol (SMTP).

Class methods
new Net::SMTP.new(server=’localhost’, port=25)→ smtp

Returns a new SMTP object connected to the given server and port.

start Net::SMTP.start(server=’localhost’, port=25, domain=ENV[’HOSTNAME’],
acct=nil, passwd=nil, authtype=:cram_md5)→ smtp

Net::SMTP.start(server=’localhost’, port=25, domain=ENV[’HOSTNAME’],
acct=nil, passwd=nil, authtype=:cram_md5) {| smtp | block }

Equivalent to Net::SMTP.new(server, port).start(...). For an explanation of
the remainder of the parameters, see the instance method Net::SMTP#start. Creates
a new SMTP object. The domain parameter will be used in the initial HELO or EHLO
transaction with the SMTP server. In the block form, the smtp object is passed into the
block. When the block terminates, the session is closed.

Instance methods
ready smtp.ready(from, to) {| anAdaptor | block }

Equivalent to sendmail(from, to) { ...}. Sends header and body lines to the
sendmail server. The from parameter is used as the sender’s name in the MAIL FROM:

command, and the to is either a string or an array of strings containing the recipients
for the RCPT TO: command. The block is passed an adaptor object. Lines are sent to
the server by calling the adaptor’s writemethod. The terminating ’.’ and QUIT are sent
automatically.

sendmail smtp.sendmail(src, from, to)

Sends header and body lines to the sendmail server. The from parameter is used as
the sender’s name in the MAIL FROM: command, and to is either a string or an array

NET/TELNET 449

N
et

/te
ln

et

of strings containing the recipients for the RCPT TO: command. Lines to be sent are
fetched by invoking src.each. The terminating ’.’ and QUIT are sent automatically.

start smtp.start(domain=ENV[’HOSTNAME’], acct=nil, passwd=nil,
authtype=:cram_md5)→ true or false

smtp.start(domain=ENV[’HOSTNAME’], acct=nil, passwd=nil,
authtype=:cram_md5) {| smtp | block }→ true or false

Starts an SMTP session by connecting to the given domain (host). If acct and passwd
are given, authentication will be attempted using the given authentication type (:plain
or :cram_md5). If a block is supplied, it will be invoked with smtp as a parameter. The
connection will be closed when the block terminates.

Class Net::Telnet < [Socket]
require "net/telnet"

Connect to a localhost, run the “date” command, and disconnect.

require ’net/telnet’

tn = Net::Telnet.new({})

tn.login "guest", "secret"

tn.cmd "date"

Monitor output as it occurs. We associate a block with each of the library calls; this
block is called whenever data becomes available from the host.

require ’net/telnet’

tn = Net::Telnet.new({}) { |str| print str }

tn.login("guest", "secret") { |str| print str }

tn.cmd("date") { |str| print str }

Get the time from an NTP server.

require ’net/telnet’

tn = Net::Telnet.new(’Host’ => ’time.nonexistent.org’,

’Port’ => ’time’,

’Timeout’ => 60,

’Telnetmode’ => false)

atomicTime = tn.recv(4).unpack(’N’)[0]

puts "Atomic time: " + Time.at(atomicTime - 2208988800).to_s

puts "Local time: " + Time.now.to_s

The net/telnet library provides a complete implementation of a telnet client and
includes features that make it a convenient mechanism for interacting with non-telnet
services.

Although the class description that follows indicates that Net::Telnet is a subclass
of class Socket, this is a lie. In reality, the class delegates to Socket. The net effect
is the same: the methods of Socket and its parent, class IO, are available through
Net::Telnet objects.

The methods new, cmd, login, and waitfor take an optional block. If present, the
block is passed output from the server as it is received by the routine. This can be used

N
et

/te
ln

et

450 CHAPTER 26. NETWORK AND WEB LIBRARIES

to provide realtime output, rather than waiting for (for example) a login to complete
before displaying the server’s response.

Class methods
new Net::Telnet.new(options)→ tn

Net::Telnet.new(options) {| str | block } → tn

Connects to a server. options is a Hash with zero or more of the following:

Option Default Meaning

Binmode false If true, no end-of-line processing will be performed.
Host localhost Name or address of server’s host.
Port 23 Name or number of service to call.
Prompt /[$%#>]/ Pattern that matches the host’s prompt.
Telnetmode true If false, ignore the majority of telnet embedded escape

sequences. Used when talking with a non-telnet server.
Timeout 10 Time in seconds to wait for a server response (both during

connection and during regular data transmission).
Waittime 0 Time to wait for prompt to appear in received data stream.

Instance methods
binmode tn.binmode→ true or false

Returns the current value of the Binmode flag.

binmode= tn.binmode = true or false

Sets the Binmode flag, returning the new value.

cmd tn.cmd(options)→ aString
tn.cmd(options) {| str | block }→ aString

Sends a string to the server and waits (using a timeout) for a string that matches a
pattern to be returned by the server. If the parameter is not a Hash, it is sent as a string
to the server, and the pattern to match and the timeout are the Prompt and Timeout

options given when tn was created. If options is a Hash, then options[’String’] is sent
to the server. options[’Match’] may be used to override the class Prompt parameter,
and options[’Timeout’] the timeout. The method returns the complete server response.

login tn.login(options, password=nil)→ aString
tn.login(options, password=nil) {| str | block } → aString

If options is a Hash, a username is taken from options[’Name’] and a password from
options[’Password’]; otherwise, options is assumed to be the username, and password
the password. The method waits for the server to send the string matching the pattern
/login[:␣]*\z/ and sends the username. If a password is given, it then waits for the
server to send /Password[:␣]*\z/ and sends the password. The method returns the
full server response.

NET/TELNET 451

N
et

/te
ln

et

print tn.print(aString)

Sends aString to the server, honoring Telnetmode, Binarymode, and any additional
modes negotiated with the server.

telnetmode tn.telnetmode→ true or false

Returns the current value of the Telnetmode flag.

telnetmode= tn.telnetmode= true or false

Sets the Telnetmode flag, returning the new value.

waitfor tn.waitfor(options)→ aString
tn.waitfor(options) {| str | block } → aString

Waits for the server to respond with a string that matches a string or pattern. If options
is not a Hash, it is compared against the cumulative server output as that output is
received using options.=== . It is likely that you will want to use a regular expression
in this case.

If options is a Hash, then options[’Match’], options[’Prompt’], or options[’String’]
provides the match. In the latter case, the string will be converted to a regular expression
before being used. options may also include the keys “Timeout” and “Waittime” to
override the class options of the same names.

write tn.write(aString)

Writes aString to the server with no translation.

C
gi

452 CHAPTER 26. NETWORK AND WEB LIBRARIES

CGI Development

Class CGI < Object
require "cgi"

require "cgi"

cgi = CGI.new("html3") # add HTML generation methods

cgi.out {

CGI.pretty (

cgi.html {

cgi.head { cgi.title{"TITLE"} } +

cgi.body {

cgi.form {

cgi.textarea("get_text") +

cgi.br +

cgi.submit

} +

cgi.h1 { "This is big!" } +

cgi.center { "Jazz Greats of the 20" +

cgi.small {"th"} + " century" + cgi.hr

} + cgi.p + cgi.table (’BORDER’ => ’5’) {

cgi.tr { cgi.td {"Artist"} + cgi.td {"Album"} } +

cgi.tr { cgi.td {"Davis, Miles"} +

cgi.td {"Kind of Blue"} }

}

}

}

) # CGI.pretty is a method call, not a block

}

(The output of this script is shown in Figure 26.2 on page 454.)

The CGI class provides support for programs used as a Web server CGI (Common
Gateway Interface) script. It contains several methods for accessing fields in a CGI
form, manipulating “cookies” and the environment, and outputting formatted HTML.

Since environment variables contain a lot of useful information for a CGI script, CGI
makes accessing them very easy—environment variables are accessible as attributes of
CGI objects. For instance, cgi.auth_type returns the value of ENV["AUTH_TYPE"].
To create the method name, the environment variable name is translated to all lower-
case, and the “HTTP_” prefix is stripped off. Thus, HTTP_USER_AGENTwould be avail-
able as the method user_agent.

Cookies are represented using a separate object of class CGI::Cookie, containing the
following accessors:

CGI 453

C
gi

Accessor Description

name Name of this cookie
value Array of values
path Path (optional)
domain Domain (optional)
expires Time of expiry, defaults to Time.now (optional)
secure true for a secure cookie

You create a cookie object using CGI::Cookie.new, which takes as arguments the
accessors listed above, or CGI::Cookie.parse, which takes an encoded string and
returns a cookie object.

Class methods
escape CGI.escape(aString)→ aNewString

Returns a URL-encoded string made from the given argument, where unsafe characters
(not alphanumeric, “_”, “-”, or “.”) are encoded using “%xx” escapes.

escapeElement CGI.escapeElement(aString 〈 , elements 〉∗)→ aNewString

Returns a string made from the given argument with certain HTML-special characters
escaped. The HTML elements given in elements will be escaped; other HTML elements
will not be affected.

print CGI::escapeElement(’
<P>’, "A", "IMG")

produces:

<P>

escapeHTML CGI.escapeHTML(aString)→ aNewString

Returns a string made from the given argument with HTML-special characters (such as
“&”,“"”,“<”,“>”) quoted using “&”, “"”, “<”, “>”, and so on.

new CGI.new(〈 aString 〉∗)→ aCgi

Returns a new CGI object. If HTML output is required, the desired standards level must
be given in aString (otherwise, no output routines will be created). The level may be
one of:

String Standards Level String Standards Level

“html3” HTML 3.2 “html4” HTML 4.0 Strict
“html4Tr” HTML 4.0 Transitional “html4Fr” HTML 4.0 Frameset

parse CGI.parse(aString)→ aHash

Parses a query string and returns a hash of its key-value pairs.

pretty CGI.pretty(anHTMLString, aLeaderString=" ")→ aCgi

Formats the given anHTMLString in a nice, readable format, optionally prefixing each
line with aLeaderString.

C
gi

454 CHAPTER 26. NETWORK AND WEB LIBRARIES

Figure 26.2. Output of sample CGI code

rfc1123_date CGI.rfc1123_date(aTime)→ aString

Returns a string representing the given time according to RFC 1123 (for instance, Mon,
1 Jan 2001 00:00:00 GMT).

unescape CGI.unescape(aString)→ aNewString

Returns a string containing “unsafe” characters made from the given URL-encoded
argument, where unsafe characters were encoded using “%” escapes.

unescapeElement CGI.unescapeElement(aString 〈 , elements 〉∗)→ aNewString

Returns a string with the selected escaped HTML elements expanded to the actual
characters.

unescapeHTML CGI.unescapeHTML(aString)→ aNewString

Returns a string made from the given argument with HTML-special quoted characters
expanded to the actual characters.

Instance methods
[] aCgi[〈 aString 〉+]→ anArray

Returns the values of the given field names from the CGI form in an Array. See the
note on multipart forms on page 456.

cookies aCgi.cookies→ aHash

Returns a new Hash object containing key-value pairs of cookie keys and values.

has_key? aCgi.has_key(aString)→ true or false

Returns true if the form contains a field named aString.

header aCgi.header(aContentType="text/html")→ aString
aCgi.header(aHash)→ aString

Returns a string containing the given headers (in the MOD_RUBY environment, the result-
ing header is sent immediately instead). If a hash is given as an argument, then the
key-value pairs will be used to generate headers.

keys aCgi.keys→ anArray

Returns an array of all existing field names for the form.

CGI 455

C
gi

out aCgi.out(aContentType="text/html") { block }→ nil

aCgi.out(aHash) { block }→ nil

Generates HTML output using the results of the block as the content. Headers are
generated as with CGI#header. See the example at the start of this section.

params aCgi.params→ aHash

Returns a new Hash object containing key-value pairs of field names and values from
the form.

HTML Output Methods
In addition, CGI supports the following HTML output methods. Each of these methods
is named after the corresponding HTML feature (or close to it). Those tags that require
content (such as blockquote) take an optional block; the block should return a String
that will be used as the content for the feature. These methods may take arguments as
indicated, or as a hash with the given names as keys.

a(url)
a(HREF⇒)

base(url)
base(HREF⇒)

blockquote(cite="") { aString }
blockquote(CITE⇒) { aString }

caption(align=nil) { aString }
caption(ALIGN⇒) { aString }

checkbox(name=nil, value=nil, checked=nil)
checkbox(NAME⇒, VALUE⇒, CHECKED⇒)

checkbox_group(name=nil, 〈 items 〉+)
checkbox_group(NAME⇒, VALUES⇒)

Items may be individual String names, or any of: an array of [name, checked], an array
of [value, name], or an array of [value, name, checked]. The value for the hash key
VALUES should be an array of these items.

file_field(name="", size=20, maxlength=nil)
file_field(NAME⇒, SIZE⇒, MAXLENGTH⇒)

form(method="post", action=nil, enctype="application/x-www-form-urlencoded") { aStr }
form(METHOD⇒, ACTION⇒, ENCTYPE⇒) { aStr }

hidden(name="", value=nil)
hidden(NAME⇒, VALUE⇒)

html() { aString }
html(PRETTY⇒, DOCTYPE⇒) { aString }

img_button(src="", name=nil, alt=nil)
img_button(SRC⇒, NAME⇒, ALT⇒)

img(src="", alt="", width=nil, height=nil)
img(SRC⇒, ALT⇒, WIDTH⇒, HEIGHT⇒)

C
gi

456 CHAPTER 26. NETWORK AND WEB LIBRARIES

multipart_form(action=nil, enctype="multipart/form-data") { aString }
multipart_form(METHOD⇒, ACTION⇒, ENCTYPE⇒) { aString }

password_field(name="", value=nil, size=40, maxlength=nil)
password_field(NAME⇒, VALUE⇒, SIZE⇒, MAXLENGTH⇒)

popup_menu(name="", items)
popup_menu(NAME⇒, SIZE⇒, MULTIPLE⇒, VALUES⇒ (array of items))

Items may be individual String names, or any of: an array of [name, selected], an array
of [value, name], or an array of [value, name, selected]. The value for the hash key
VALUES should be an array of these items.

radio_button(name="", value=nil, checked=nil)
radio_button(NAME⇒, VALUE⇒, CHECKED⇒)

radio_group(name="", items)
radio_group(NAME⇒, VALUES⇒ (array of items))

Items may be individual String names, or any of: an array of [name, selected], an array
of [value, name], or an array of [value, name, selected]. The value for the hash key
VALUES should be an array of these items.

reset(value=nil, name=nil)
reset(VALUE⇒, NAME⇒)

scrolling_list(alias for popup_menu)

submit(value=nil, name=nil)
submit(VALUE⇒, NAME⇒)

text_field(name="", value=nil, size=40, maxlength=nil)
text_field(NAME⇒, VALUE⇒, SIZE⇒, MAXLENGTH)

textarea(name="", cols=70, rows=10)
textarea(NAME⇒, COLS⇒, ROWS⇒)

In addition, all HTML tags are supported as methods, including title, head, body,
br, pre, and so on. The block given to the method must return a String, which will be
used as the content for that tag type. Not all tags require content: <P>, for example, does
not. The available tags vary according to the supported HTML level—Table 26.1 on
the facing page lists the complete set. For these methods, you can pass in a hash with
attributes for the given tag. For instance, you might pass in ’BORDER’=>’5’ to the
table method to set the border width of the table.

Multipart Form Values
When dealing with a multipart form, the array returned by CGI#[] is composed of
objects of class Tempfile, with the following dynamically added methods:

Method Description

read Body
local_path Path to local file containing the content
original_filename Original filename of the content
content_type Content type

CGI/SESSION 457

C
gi

/s
es

si
onTable 26.1. HTML tags available as methods

HTML 3

a address applet area b base basefont big blockquote body br caption

center cite code dd dfn dir div dl dt em font form h1 h2 h3 h4 h5 h6 head

hr html i img input isindex kbd li link listing map menu meta ol option p

param plaintext pre samp script select small strike strong style sub sup

table td textarea th title tr tt u ul var xmp

HTML 4

a abbr acronym address area b base bdo big blockquote body br button

caption cite code col colgroup dd del dfn div dl dt em fieldset form h1

h2 h3 h4 h5 h6 head hr html i img input ins kbd label legend li link map

meta noscript object ol optgroup option p param pre q samp script select

small span strong style sub sup table tbody td textarea tfoot th thead

title tr tt ul var

HTML 4 Transitional

a abbr acronym address applet area b base basefont bdo big blockquote

body br button caption center cite code col colgroup dd del dfn dir div

dl dt em fieldset font form h1 h2 h3 h4 h5 h6 head hr html i iframe img

input ins isindex kbd label legend li link map menu meta noframes

noscript object ol optgroup option p param pre q s samp script select

small span strike strong style sub sup table tbody td textarea tfoot th

thead title tr tt u ul var

HTML 4 Frameset Same as HTML4TR, plus:

frame frameset

Class CGI::Session < Object
require "cgi/session"

A CGI::Session maintains a persistent state for web users in a CGI environment.
Sessions may be memory-resident or may be stored on disk. See the discussion on
page 134 for details.

Class methods
new CGI::Session.new(aCgi, 〈 aHash 〉∗)→ aSession

Returns a new session object for the CGI query. Options that may be given in aHash
include:

C
gi

/s
es

si
on

458 CHAPTER 26. NETWORK AND WEB LIBRARIES

Option Description

session_key Name of CGI key for session identification.
session_id Value of session id.
new_session If true, create a new session id for this session. If false, use

an existing session identified by session_id. If omitted, use
an existing session if available, otherwise create a new one.

database_manager Class to use to save sessions; may be CGI::Session::File-
Store or CGI::Session::MemoryStore (or user defined if
you’re brave). Default is FileStore.

tmpdir For FileStore, directory for session files.
prefix For FileStore, prefix of session filenames.

Instance methods
[] aSession[aKey]→ aValue

Returns the value for the given key.

[]= aSession[aKey] = aValue→ aValue

Sets the value for the given key.

delete aSession.delete

Calls the delete method of the underlying database manager. For FileStore, deletes
the physical file containing the session. For MemoryStore, removes the session from
memory.

update aSession.update

Calls the update method of the underlying database manager. For FileStore, writes
the session data out to disk. Has no effect with MemoryStore.

Chapter 27

Microsoft Windows Support

The three libraries documented in this chapter turn Ruby into a powerful and convenient
Windows scripting language. Now you have the power to control your applications, but
in a controlled, object-oriented environment.

Class WIN32OLE < Object
require "win32ole"

require ’win32ole’

ie = WIN32OLE.new(’InternetExplorer.Application’)

ie.visible = true

ie.gohome

WIN32OLE provides a client interface to Windows 32 OLE Automation servers. See the
tutorial description on page 150 for more information.

Class constants

WIN32OLE::VERSION Current version number

Class methods
connect WIN32OLE.connect(aString)→ ole

Returns a new OLE automation client connected to an existing instance of the named
automation server.

const_load WIN32OLE.const_load(ole, 〈 aClass=WIN32OLE 〉)→ nil

Defines the constants from the specified automation server as class constants in aClass.

new WIN32OLE.new(aString)→ ole

Returns a new OLE automation client connected to a new instance of the automation
server named by aString.

459

W
in

32
ol

e

460 CHAPTER 27. MICROSOFT WINDOWS SUPPORT

Instance methods
[] ole[aString]→ anObject

Returns the named property from the OLE automation object.

[]= ole[aString] = aValue→ nil

Sets the named property in the OLE automation object.

each ole.each {| anObj | block } → nil

Iterates over each item of this OLE server that supports the IEnumVARIANT interface.

invoke ole.invoke (aCmdString, 〈 args 〉∗)→ anObject

Invokes the command given in aCmdString with the given args. args may be a Hash of
named parameters and values. You don’t need to call invoke explicitly; this class uses
method_missing to forward calls through invoke, so you can simply use the OLE
methods as methods of this class.

Class WIN32OLE_EVENT < Object
require "win32ole"

This (slightly modified) example from the Win32OLE 0.1.1 distribution shows the use
of an event sink.

require ’win32ole’

$urls = []

def navigate(url)

$urls << url

end

def stop_msg_loop

puts "IE has exited..."

throw :done

end

def default_handler(event, *args)

case event

when "BeforeNavigate"

puts "Now Navigating to #{args[0]}..."

end

end

ie = WIN32OLE.new(’InternetExplorer.Application’)

ie.visible = TRUE

ie.gohome

ev = WIN32OLE_EVENT.new(ie, ’DWebBrowserEvents’)

ev.on_event {|*args| default_handler(*args)}

ev.on_event("NavigateComplete") {|url| navigate(url)}

ev.on_event("Quit") {|*args| stop_msg_loop}

catch(:done) {

loop {

WIN32OLE_EVENT.message_loop

}

}

WIN32API 461

W
in

32
A

P
I

puts "You Navigated to the following URLs: "

$urls.each_with_index do |url, i|

puts "(#{i+1}) #{url}"

end

WIN32OLE_EVENT is used in conjunction with the WIN32OLE class to add callbacks for
Windows 32 events.

Class methods
message_loop WIN32OLE_EVENT.message_loop→ nil

Executes the Windows event loop, translating and dispatching events.

new WIN32OLE_EVENT.new (anOle, aName)→ oleEvent

Returns a new WIN32OLE_EVENT (an event sink) for the given WIN32OLE object and
named event source. If aName is nil, it will attempt to use the default source and will
raise a RuntimeError if it cannot find one.

Instance methods
on_event oleEvent.on_event (〈 anEvent 〉) {| args | block } → nil

Defines a callback for the named anEvent. If anEvent is nil, then this callback is
associated with all events. The block will be given any arguments appropriate for this
event.

Class Win32API < Object
require "Win32API"

This example is from the Ruby distribution, in ext/Win32API:

require ’Win32API’

getCursorPos = Win32API.new("user32", "GetCursorPos", [’P’], ’V’)

lpPoint = " " * 8 # store two LONGs

getCursorPos.Call(lpPoint)

x, y = lpPoint.unpack("LL") # get the actual values

print "x: ", x, "\n"

print "y: ", y, "\n"

ods = Win32API.new("kernel32", "OutputDebugString", [’P’], ’V’)

ods.Call("Hello, World\n")

GetDesktopWindow = Win32API.new("user32", "GetDesktopWindow", [], ’L’)

GetActiveWindow = Win32API.new("user32", "GetActiveWindow", [], ’L’)

SendMessage = Win32API.new("user32", "SendMessage", [’L’] * 4, ’L’)

SendMessage.Call(GetDesktopWindow.Call, 274, 0xf140, 0)

The Win32API module allows access to any arbitrary Windows 32 function. Many of
these functions take or return a Pointer datatype—a region of memory corresponding
to a C string or structure type.

In Ruby, these pointers are represented using class String, which contains a sequence
of 8-bit bytes. It is up to you to pack and unpack the bits in the String. See the
reference section for unpack on page 346 and pack on page 261 for details.

W
in

32
A

P
I

462 CHAPTER 27. MICROSOFT WINDOWS SUPPORT

Class methods
new Win32API.new(dllname, procname, importArray, export)→ wapi

Returns a new object representing a Windows 32 API function. dllname is the name of
the DLL containing the function, such as “user32” or “kernel32.” procname is the name
of the desired function. importArray is an array of strings representing the types of
arguments to the function. export is a string representing the return type of the function.
Strings “n” and “l” represent numbers, “i” represent integers, “p” represents pointers
to data stored in a string, and “v” represents a void type (used for export parameters
only). These strings are case-insensitive.

Instance methods
call wapi.call(〈 args 〉∗)→ anObject

Calls this API function with the given arguments, which must match the signature spec-
ified to new.

Call wapi.Call(〈 args 〉∗)→ anObject

Synonym for Win32API#call.

Part V

Appendices

463

Appendix A

Embedded Documentation

So you’ve written a masterpiece, a class in a class of its own, and you’d like to share it
with the world. But, being a responsible developer, you feel the need to document your
creation. What do you do? The simplest solution is to use Ruby’s built-in documenta-
tion format, RD, and rdtool, a Ruby utility suite that converts this documentation into
a variety of output formats.

rdtool scans a file for =begin and =end pairs, and extracts the text between them
all. This text is assumed to be documentation in RD format. The text is then processed
according to a simple set of rules:

• Lines of text flush to the left margin are converted to paragraphs.

• Lines starting with one to four equals signs are headings. “=” is a first-level head-
ing, “==” a second-level heading, and so on. “+” and “++” can be used to signal
fifth- and sixth-level headings if you really want to go that deep.

= Top Level Heading

== Second Level Heading

...

• Lines in which the first nonspace is an asterisk indicate the beginnings of bullet
lists. Continuation lines for each bullet item should line up with the text on the
first line. Lists may be nested.

This is normal text

* start of a

multiline bullet item

* and another

* nested item

* second nested

* third item at top level

• Lines where the first nonspace characters are digits between parentheses indicate
numbered lists. The actual digits used are ignored. Again, lists may be nested.

(1) A numbered item

* subitem in a bulleted list

* subitem

(2) Second numbered item

(9) This will actually be labeled ’3.’

465

466 APPENDIX A. EMBEDDED DOCUMENTATION

Figure A.1. rd source file

=begin
= Synopsis

require "tempfile"
tf = Tempfile.new("afile")
tf.path
tf.puts("Cosi Fan Tutte")
tf.close
tf.open
tf.gets
tf.close(true)

= Description
Class (({Tempfile})) creates managed temporary files. Although they
behave like any other (({IO})) object, temporary files are automatically
deleted when the Ruby program terminates. Once a (({Tempfile})) object
has been created, the underlying file may be opened and closed a number
of times in succession.
(({Tempfile})) does not directly inherit from (({IO})). Instead, it
delegates calls to a (({File})) object. From the programmer’s
perspective, apart from the unusual ((<(({new}))|Tempfile.new>)),
((<(({open}))|Tempfile#open>)), and ((<(({close}))|Tempfile#close>))
semantics, a (({Tempfile})) object behaves as if it were an (({IO}))
object.
= Class Methods
--- Tempfile.new(basename, tmpdir=see below)

Constructs a temporary file in the given directory. The filename
is built by concatenating ((|basename|)), the current process id,
and (as an extension) a unique sequence number. If the ((|tmpdir|))
parameter is not supplied, it defaults to the value of one of the
environment variables (({TMPDIR})), (({TMP})), or (({TEMP})), or to
the directory (({/tmp})). The file is then opened using mode
``w+’’, which allows reading and writing and deletes any
existing content.

--- Tempfile.open(basename, tmpdir)
Synonym for ((<Tempfile.new>)).

= Instance Methods
--- Tempfile#open

Reopens ((|aTempfile|)) using mode ``r+’’, which allows reading and
writing but does not delete existing content.

--- Tempfile#close(final=false)
Closes ((|aTempfile|)). If ((|final|)) is true, deletes the
underlying real file. If ((|final|)) is false, ((|aTempfile|)) may
be subsequently reopened. In all cases, the underlying file is
deleted when the program terminates.

--- Tempfile#path
Returns the full path of the underlying file.

= History
$Id: tempfile.rd,v 1.1 2001/01/23 22:01:02 dave Exp $

=end

• Lines starting with a colon indicate labeled lists. The text on the colon line is the
label. The immediately following text (which may not be indented less than the
label) is the descriptive text. Again, each type of list may be nested.

: red

when the light is red, you

must stop

: amber

the amber light means that things are about to change. Either:

* step on the gas, or

* slam on the brakes

: green

green means GO

• Lines starting with three minus signs are a special kind of labeled list, when the
labels are method names and signatures. The source in Figure A.1 shows a handful
of these in action.

467

Figure A.2. Output from source in Figure A.1Synopsis

require "tempfile"

tf = Tempfile.new("afile")

tf.path

tf.puts("Cosi Fan Tutte")

tf.close

tf.open

tf.gets

tf.close(true)

Description

Class Tempfile creates managed temporary files. Although they behave like
any other IO object, temporary files are automatically deleted when the Ruby
program terminates. Once a Tempfile object has been created, the underlying
file may be opened and closed a number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to
a File object. From the programmer’s perspective, apart from the unusual
new, open, and close semantics, a Tempfile object behaves as if it were an IO

object.

Class Methods

Tempfile.new(basename, tmpdir=see below)

Constructs a temporary file in the given directory. The filename is built
by concatenating basename, the current process id, and (as an extension)
a unique sequence number. If the tmpdir parameter is not supplied, it
defaults to the value of one of the environment variables TMPDIR, TMP, or
TEMP, or to the directory /tmp. The file is then opened using mode “w+”,
which allows reading and writing and deletes any existing content.

Tempfile.open(basename, tmpdir)

Synonym for Tempfile.new.

Instance Methods

Tempfile#open

Reopens aTempfile using mode “r+”, which allows reading and writing
but does not delete existing content.

Tempfile#close(final=false)

Closes aTempfile. If final is true, deletes the underlying real file. If fi-

nal is false, aTempfile may be subsequently reopened. In all cases, the
underlying file is deleted when the program terminates.

Tempfile#path

Returns the full path of the underlying file.

History

$Id: tempfile.rd,v 1.1 2001/01/23 22:01:02 dave Exp $

1

468 APPENDIX A. EMBEDDED DOCUMENTATION

Indented text that isn’t part of a list is set verbatim (such as the stuff under “Synopsis”
in Figures A.1 and A.2).

Inline Formatting
Within blocks of text and headings, you can use special inline sequences to control text
formatting. All sequences are nested within a set of double parentheses.

Sequence Example Intended Use

((*emphasis*)) emphasis Emphasis (normally italic)
(({code stuff})) code stuff Code
((|variable|)) variable Variable name
((%type me%)) type me Keyboard input
((:index term:)) index term Something to be indexed
((<reference>)) reference Hyperlink reference
((-footnote-)) text.4 Footnote text. A reference is placed inline, and the

text of the footnote appears at the bottom of the
page.

((’verb’)) verb Verbatim text

Cross References
The content of headings, the labels of labeled lists, and the names of methods are auto-
matically made into potential cross reference targets. You make links to these targets
from elsewhere in the document by citing their contents in the ((<...>)) construct.

= Synopsis

...

See ((<Return Codes>)) for details.

..

== Instance Methods

--- Tempfile.open(filename)

Opens the file...

== Return Codes

..

The method ((<Tempfile.open>)) raises an (({IOException}))...

If a reference starts with “URL:”, rdtool attempts to format it as an external hyperlink.

The reference ((<display part|label>)) generates a link to label but places the
text “display part” in the output document. This is used in the description section of the
example in Figure A.1 on page 466 to generate references to the method names:

perspective, apart from the unusual ((<(({new}))|Tempfile.new>)),

...

This construct displays the word “new” in code font but uses it as a hyperlink to the
method Tempfile.new.

METHOD NAMES 469

Method Names
rdtoolmakes certain assumptions about the format of method names. Class or module
methods should appear as Class.method, instance methods as Class#method, and
class or module constants as Class::Const.

--- Tempfile::IOWRITE

Open the file write-only.

...

--- Tempfile.new(filename)

Constructs a temporary file in the given directory. The file

...

--- Tempfile#open

Reopens ((|aTempfile|)) using mode ``r+’’, which allows reading

..

Including Other Files
The contents of filename will be inserted wherever the document contains

<<< filename

If the file is specified with an .rd or .rb extension, it will be interpreted as RD docu-
mentation.

If the filename has no extension, rdtool will look for a file with an extension that
matches the type of output being produced (.html for HTML files, .man for man files,
and so on) and interpolate that file’s contents in the output stream. Thus, a line such
as:

<<< header

could be used to add an output-dependent header to a document.

Using rdtool
RD documentation can be included directly in a Ruby source program or written into
a separate file (which by convention will have the extension .rd). These files are pro-
cessed using the rd2 command to produce appropriately formatted output.

rd2 [options] inputfile [>outputfile]

Some common options include:

-rformat Select an output format. -rrd/rd2html-lib.rb produces HTML output
(the default). -rrd/rd2man-lib.rb produces Unix man page output.

-oname Set the base part of the output filename.
–help List the full set of options.

470 APPENDIX A. EMBEDDED DOCUMENTATION

Mandatory Disclaimer
As we are writing this, RD and rdtool are undergoing continuous development. It is
likely that some of the details we give here will be out of date (or just plain wrong) by
the time you read this.

Included with the rdtool distribution is the file README.rd. We suggest you do so, as
it will give you the current scoop on producing Ruby documentation.

Appendix B

Interactive Ruby Shell

Back on page 116 we introduced irb, a Ruby module that lets you enter Ruby programs
interactively and see the results immediately. This appendix goes into more detail on
using and customizing irb.

Command Line
irb is run from the command line.

irb [irb-options] [ruby_script] [options]

The command-line options for irb are listed in Table B.1 on the following page. Typ-
ically, you’ll run irb with no options, but if you want to run a script and watch the
blow-by-blow description as it runs, you can provide the name of the Ruby script and
any options for that script.

Initialization File
irb uses an initialization file in which you can set commonly used options or execute
any required Ruby statements. When irb is run, it will try to load an initialization file
from one of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and
$irbrc.

Within the initialization file you may run any arbitrary Ruby code. You can also set
any of the configuration values that correspond to command-line arguments as shown
in Table B.2 on the next page.

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc
object. This proc will be invoked whenever the irb context is changed, and will receive
that new context as a parameter. You can use this facility to change the configuration
dynamically based on the context.

471

472 APPENDIX B. INTERACTIVE RUBY SHELL

Table B.1. irb command-line options

Option Description

-f Suppress reading ~/.irbrc.
-m Math mode (fraction and matrix support is avail-

able).
-d Set $DEBUG to true (same as “ruby -d”).
-r load-module Same as “ruby -r”.
--inspect Use “inspect” for output (the default, unless in math

mode).
--noinspect Do not use inspect for output.
--readline Use Readline extension module.
--noreadline Do not use Readline extension module.
--prompt prompt-mode Switch prompt mode. Predefined prompt modes are

“default”, “simple”, “xmp”, and “inf-ruby”.
--prompt-mode prompt-mode Same as --prompt.
--inf-ruby-mode Sets up irb to run in inf-ruby-mode under Emacs.

Changes the prompt and suppresses --readline.
--simple-prompt Simple prompt mode.
--noprompt Do not display a prompt.
--tracer Display trace for execution of commands.
--back-trace-limit n Display backtrace information using the top n and

last n entries. The default value is 16.
--irb_debug n Set internal debug level to n (only for irb develop-

ment).
-v, --version Print the version of irb.

Table B.2. irb configuration values

IRB.conf[:IRB_NAME] = "irb" IRB.conf[:MATH_MODE] = false

IRB.conf[:USE_TRACER] = false IRB.conf[:USE_LOADER] = false

IRB.conf[:IGNORE_SIGINT] = true IRB.conf[:IGNORE_EOF] = false

IRB.conf[:INSPECT_MODE] = nil IRB.conf[:IRB_RC] = nil

IRB.conf[:BACK_TRACE_LIMIT] = 16 IRB.conf[:USE_LOADER] = false

IRB.conf[:USE_READLINE] = nil IRB.conf[:USE_TRACER] = false

IRB.conf[:IGNORE_SIGINT] = true IRB.conf[:IGNORE_EOF] = false

IRB.conf[:PROMPT_MODE] = :DEFAULT IRB.conf[:PROMPT] = { ... }

IRB.conf[:DEBUG_LEVEL] = 0 IRB.conf[:VERBOSE] = true

COMMANDS 473

Commands
At the irb prompt, you can enter any valid Ruby expression and see the results. You can
also use any of the following commands to control the irb session.

exit, quit, irb_exit

Quits this irb session or subsession. If you’ve used cb to change bindings (see
below), exits from this binding mode.

conf, irb_context

Displays current configuration. Modifying the configuration is achieved by invok-
ing methods of conf.

conf.back_trace_limit n

Sets display lines of backtrace as top n and tail n. The default value is 16.

conf.debug_level = N

Sets debug level of irb.

conf.ignore_eof = true/false

Specifies the behavior of an end of file received on input. If true, it will be ignored;
otherwise, it will quit irb.

conf.ignore_sigint= true/false

Specifies the behavior of ^C (control-c). If false, ^C will quit irb. If true, ^C during
input will cancel input and return to the top level; during execution, ^C will abort
the current operation.

conf.inf_ruby_mode = true/false

If true, changes the prompt and disables readline support, allowing irb to work
with inf-ruby-mode.1 The default value is false.

conf.inspect_mode = true/false/nil

Specifies inspect mode according to the following values:

true Display inspect (default).
false Display to_s.
nil Inspect mode in non-math mode, non-inspect mode in math mode.

conf.irb_level

Displays the current binding level (see cb).

conf.math_mode

Displays whether or not Ruby is in math mode.

conf.use_loader = true/false

Specifies whether or not irb’s own file reader method is used with load/require.

conf.prompt_c

The prompt for a continuing statement (for example, immediately after an “if”).

1. inf-ruby-mode allows Emacs users to interact with Ruby while editing programs. See the file
inf_ruby.el in the misc directory of the distribution for more details.

474 APPENDIX B. INTERACTIVE RUBY SHELL

conf.prompt_i

The standard, top-level prompt.

conf.prompt_s

The prompt for a continuing string.

conf.rc = true/false

Specifies whether or not to use the initialization file ~/.irbrc.

conf.use_prompt = true/false

Specifies whether or not to display prompts.

conf.use_readline = true/false/nil

Specifies whether or not to use Readline according to the following values:

true Use Readline.
false Do not use Readline.
nil Use Readline except for inf-ruby-mode (default).

conf.verbose=true/false

Specifies whether or not verbose messages are displayed.

cb, irb_change_binding 〈 obj 〉

Creates and enters a new binding that has its own scope for local variables. If obj
is given, it will be used as self in the new binding.

irb 〈 obj 〉

Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs

Lists irb subsessions.

fg n, irb_fg n

Switches into the specified irb subsession. n may be any of the following values:

irb subsession number
thread id
irb object
self (the obj that launched a particular subsession)

kill n, irb_kill n

Kills an irb subsession. n may be any of the values as described for irb_fg.

Configuring the Prompt
You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts
are stored in the prompt hash:

IRB.conf[:PROMPT]

For example, to establish a new prompt mode called “MY_PROMPT”, you might enter
the following (either directly at an irb prompt or in the .irbrc file):

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode

:PROMPT_I => "...", # normal prompt

RESTRICTIONS 475

:PROMPT_S => "...", # prompt for continuing strings

:PROMPT_C => "...", # prompt for continuing statement

:RETURN => " ==>%s\n" # format to return value

}

Then, invoke irb with the prompt mode above by

% irb --prompt my-prompt

Or set the following configuration value:

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The constants PROMPT_I, PROMPT_S, and PROMPT_C specify the format for each of the
prompt strings. Within the prompt format, the following flags are available and will
expand to the given text:

Flag Description

%N Current command.
%m to_s of the main object (self).
%M inspect of the main object (self).
%l Delimiter type. In strings that are continued across a line break, %l will display

the type of delimiter used to begin the string, so you’ll know how to end it. The
delimiter will be one of ", ’, /,], or ‘.

%ni Indent level. The optional number n is used as a width specification to printf,
as printf("%nd").

%nn Current line number (n used as with the indent level).
%% A literal percent sign.

For instance, the default prompt mode is defined as follows:

IRB.conf[:PROMPT_MODE][:DEFAULT] = {

:PROMPT_I => "%N(%m):%03n:%i> ",

:PROMPT_S => "%N(%m):%03n:%i%l ",

:PROMPT_C => "%N(%m):%03n:%i* ",

:RETURN => "%s\n"

}

Restrictions
Because of the way irb works, there is a minor incompatibility between it and the
standard Ruby interpreter. The problem lies in the determination of local variables.

Normally, Ruby looks for an assignment statement to determine if something is a
variable—if a name hasn’t been assigned to, then Ruby assumes that name is a method
call.

eval "a = 0"

a

produces:

prog.rb:2: undefined local variable or method `a’

for #<Object:0x3a3a24> (NameError)

476 APPENDIX B. INTERACTIVE RUBY SHELL

In this case, the assignment is there, but it’s within a string, so Ruby doesn’t take it into
account.

irb, on the other hand, executes statements as they are entered.

irb(main):001:0> eval "a = 0"

0

irb(main):002:0> a

0

In irb, the assignment was executed before the second line was encountered, so “a” is
correctly identified as a local variable.

If you need to match the Ruby behavior more closely, you can place these statements
within a begin/end pair.

irb(main):001:0> begin

irb(main):002:1* eval "a = 0"

irb(main):003:1> a

irb(main):004:1> end

NameError: undefined local variable or method ‘a’

(irb):3:in ‘irb_binding’

rtags, xmp, and the Frame Class
The base version of irb is installed along with Ruby itself. But there is an extended
version of irb in the archives containing a few extra goodies that need mentioning.

rtags

rtags is a command used to create a TAGS file for use with either the emacs or vi
editor.

rtags [-vi] [files]...

By default, rtags makes a TAGS file suitable for emacs (see etags.el). The -vi option
makes a TAGS file for use with vi.

rtags needs to be installed in the same manner as irb (that is, you need to install irb in
the library path and make a link from irb/rtags.rb to bin/rtags).

xmp

irb’s xmp is an “example printer”—that is, a pretty-printer that shows the value of each
expression as it is run (much like the script we wrote to format the examples in this
book). There is also another stand-alone xmp in the archives.

xmp can be used as follows:

require "irb/xmp"

xmp <<END

artist = "Doc Severinsen"

artist

END

produces:

RTAGS, XMP, AND THE FRAME CLASS 477

artist = "Doc Severinsen"

artist = "Doc Severinsen"

==>"Doc Severinsen"

artist

artist

==>"Doc Severinsen"

Or, it can be used as an object instance. Used in this fashion, the object maintains
context between invocations:

require "irb/xmp"

x = XMP.new

x.puts <<END

artist = "Louis Prima"

END

x.puts <<END

artist

END

produces:
artist = "Louis Prima"

artist = "Louis Prima"

==>"Louis Prima"

artist

artist

==>"Louis Prima"

You can explicitly provide a binding with either form; otherwise, xmp uses the caller’s
environment.

xmp code_string, abinding

XMP.new(abinding)

Note that xmp does not work with multithreading.

The Frame Class

The IRB::Frame class represents the interpreter’s stack and allows easy access to the
Binding environment in effect at different stack levels.

IRB::Frame.top(n = 0) Returns a Binding for the nth context from the top.
The 0th context is topmost, most recent frame.

IRB::Frame.bottom(n = 0) Returns a Binding for the nth context from the
bottom. The 0th context is the bottommost, initial
frame.

IRB::Frame.sender Returns the object (the sender) that invoked the cur-
rent method.

You can use this facility, for instance, to examine local variables from the method that
called the current method:

require ’irb/frame’

def outie

b = IRB::Frame.top(1)

eval "p my_local", b

478 APPENDIX B. INTERACTIVE RUBY SHELL

end

def innie

my_local = 102.7

outie

end

innie

produces:
102.7

Note that this doesn’t work with multithreaded programs.

Appendix C

Support

One of the major features of Open Source projects is the technical support. Articles in
the mass media often criticize open source efforts for not having the same tech support
that a commercial product has. And boy is that a good thing! Instead of dialing up
some overworked and understaffed help desk and being treated to Music On Hold for
an hour or so without ever getting the answer you need, we have a better solution: the
Ruby community. The author of Ruby, the authors of this book, and many other Ruby
users are willing and able to lend you a hand, should you need it.

The syntax of Ruby remains fairly stable, but as with all evolving software, new fea-
tures are added every now and again. As a result, both printed books and the online
documentation can fall behind. All software has bugs, and Ruby is no exception. There
aren’t many, but they do crop up. See the bug reporting section on the following page
for details.

If you experience a problem with Ruby, feel free to ask in the mailing lists or on the
newsgroup (more on those in just a minute). Generally you’ll get timely answers from
Matz himself, the author of the language, from other gurus, and from those who’ve
solved problems similar to your own.

There might be similar questions in the mailing lists or on the newsgroup, and it is good
“netiquette” to read through recent postings before asking. If you can’t find the answer
you need, ask, and a correct answer will usually show up with remarkable speed and
precision.

Web Sites
The official Ruby Home Page is http://www.ruby-lang.org.

You can also find Ruby information at http://www.rubycentral.com . In partic-
ular, you’ll find complete online references to Ruby’s built-in classes and modules at
www.rubycentral.com/ref/, and to the Ruby FAQ at www.rubycentral.com/faq/ .

While you’re surfing, drop in on http://www.pragmaticprogrammer.com and see
what we’re up to.

479

http://www.ruby-lang.org
http://www.rubycentral.com
www.rubycentral.com/ref/
www.rubycentral.com/faq/
http://www.pragmaticprogrammer.com

480 APPENDIX C. SUPPORT

Download Sites
The latest version of Ruby can be downloaded from: http://www.ruby-lang.org/en/download.html.

Mirror sites are:

• ftp://ftp.TokyoNet.AD.JP/pub/misc/ruby

• ftp://ftp.iij.ad.jp/pub/lang/ruby

• ftp://blade.nagaokaut.ac.jp/pub/lang/ruby

• ftp://ftp.krnet.ne.jp/pub/ruby

• ftp://mirror.nucba.ac.jp/mirror/ruby

• http://mirror.nucba.ac.jp/mirror/ruby

Precompiled Windows binaries (using cygwin) are in the pc/ subdirectory.

Usenet Newsgroup
Ruby has its own newsgroup, comp.lang.ruby. Traffic on this group is archived and
mirrored to the ruby-talk mailing list.

Mailing Lists
There are five mailing lists now talking about Ruby. The first is in English, the last four
in Japanese:

ruby-talk@netlab.co.jp English language discussion of Ruby (mirrored to
comp.lang.ruby).

ruby-list@netlab.co.jp Japanese language discussion of Ruby.
ruby-dev@netlab.co.jp List for Ruby developers.
ruby-ext@netlab.co.jp List for people writing extensions for or with Ruby.
ruby-math@netlab.co.jp Ruby in mathematics.

See http://www.ruby-lang.org/en/ml.html for details on joining a mailing list.

The mailing lists are archived, and can be searched using http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml.

Bug Reporting
If you think you’ve spotted a bug in Ruby, you may want to browse the bug database at
http://www.ruby-lang.org/cgi-bin/ruby-bugs . You may also want to check
to see if a new version of Ruby is available—perhaps the bug you’ve found has already
been fixed.

You can submit a bug report either by using the Web page mentioned above or by
sending an e-mail to ruby-bugs@ruby-lang.org.

http://www.ruby-lang.org/en/download.html
ftp://ftp.TokyoNet.AD.JP/pub/misc/ruby
ftp://ftp.iij.ad.jp/pub/lang/ruby
ftp://blade.nagaokaut.ac.jp/pub/lang/ruby
ftp://ftp.krnet.ne.jp/pub/ruby
ftp://mirror.nucba.ac.jp/mirror/ruby
http://mirror.nucba.ac.jp/mirror/ruby
http://www.ruby-lang.org/en/ml.html
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://www.ruby-lang.org/cgi-bin/ruby-bugs

BUG REPORTING 481

When reporting a suspected bug, it would be a good idea to include the output of
“ruby -v” along with any problematic source code. People will also need to know
the operating system you’re running. If you compiled your own version of Ruby, it
might be a good idea to attach your rbconfig.rb file as well.

If you have a problem using irb, be aware of its limitations (see the reference section
beginning on page 471). See what happens using just Ruby itself.

Appendix D

Bibliography

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions: Powerful Techniques
for Perl and Other Tools. O’Reilly & Associates, Inc., Sebastopol, CA,
1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wes-
ley, Reading, MA, 1995.

[HT00] Andrew Hunt and David Thomas. The Pragmatic Programmer: From
Journeyman to Master. Addison-Wesley, Reading, MA, 2000.

[Lid98] Stephen Lidie. Perl/Tk Pocket Reference. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1998.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ, second edition, 1997.

[Ste98a] W. Richard Stevens. Unix Network Programming, Volume 1: Network-
ing APIs: Sockets and Xti. Prentice Hall, Englewood Cliffs, NJ, second
edition, 1998.

[Ste98b] W. Richard Stevens. Unix Network Programming, Volume 2: Interprocess
Communications. Prentice Hall, Englewood Cliffs, NJ, second edition,
1998.

[Wal99] Nancy Walsh. Learning Perl/Tk: Graphical User Interfaces with Perl.
O’Reilly & Associates, Inc., Sebastopol, CA, 1999.

483

Index
Order

!

"
#

$

%
&
’
(

)

*
+
,
-
.
/
:
;
<
=
>
?
@
[

\
]

^
_

`
{

|
}
~

Every built-in and library method described in this book is indexed at least twice, once under the
method’s name and again under the name of the class or module that contains it. These entries
have the method and class/module names in typewriter font, and have the word method, class,
or module appended. If you want to know what methods class String contains, you can look up
“String class” in the index. If instead you want to know which classes and modules support a
method called index, look under “index method.” A bold page number for these method listings
shows the reference section entry.

When a class or method name corresponds with a broader concept (such as String), we’ve indexed
the class separately from the concept.

Symbols are sorted using ASCII collation. The table on the right might help those who haven’t
yet memorized the positions of the punctuation characters.

Symbols
! (logical not) 73, 201
!= (not equal) 73
!~ (does not match) 53, 73
(comment) 181
#! (shebang) xxviii
#{...}

substitute in pattern 54, 188
substitute in string 47, 185

$ (global variable prefix) 191
$ (in pattern) 54, 187
$ variables

English names 194, 406
% method

class Bignum 265
class Fixnum 286
class Float 287
class String 333

%q{...}, %Q{...} (string
literal) 47, 184

%r{...} (regexp) 53, 187
%w{...} (array of words) 9,

186
%x{...} (command expansion)

68, 198, 376
%{...} (string literal) 47, 184
& (block parameter to method)

42, 62, 206
& method

class Array 254

class Bignum 265
class FalseClass 274
class Fixnum 286
class NilClass 318
class TrueClass 365

&& (logical and) 73, 201
(...) (in pattern) 57, 188
(?...) (regexp extensions)

189
* (array argument) 205
* (in pattern) 56, 188
* method

class Array 254
class Bignum 265
class Fixnum 286
class Float 287
class String 333

** method
class Bignum 265
class Fixnum 286
class Float 287

+ (in pattern) 56, 188
+ method

class Array 254
class Bignum 265
class Date 404
class Fixnum 286
class Float 287
class String 333
class Time 360

+@ method
class Numeric 319

– method
class Array 255
class Bignum 265
class Date 404
class Fixnum 286
class Float 287
class Time 360

–@ method
class Numeric 319

. (in pattern) 188

.. and ... (range) 51
/ method

class Bignum 265
class Fixnum 286
class Float 287

/.../ (regexp) 53, 187
: (symbol creation) 186, 198
:: (scope resolution) 192, 198,

210, 211
vs. “.” 207

; (line separator) 181
< (superclass) 209
< method

module Comparable 368
<, <=, >, >= method

class Module 311
<= method

module Comparable 368

485

486 INDEX

<=> (comparison operator) 52,
74, 368, 369

<=> method
class Array 255
class Bignum 266
class Complex 400
class Date 404
class File::Stat 281
class Fixnum 286
class Float 287
class Module 311
class String 334
class Time 360

<<

here document 47, 184
singleton object 209, 218

<< method
class Array 255
class Bignum 265
class Date 404
class Fixnum 286
class IO 102, 299
class String 334

= (assignment) 69, 198
== (equals) 74
== method

class Array 255
class Complex 400
class Hash 289
class Object 321
class Regexp 332
class String 334
class Struct 349
module Comparable 368

=== (case equals) 74, 76, 203
=== method

class Array 255
class Date 404
class Module 311
class Object 321
class Range 330
class Regexp 332
class String 334

=>

hash creation 33, 186
in argument list 66, 206
rescue clause 85, 214

=begin...=end 181, 465
=~ (match) 53, 74
=~ method

class Object 321
class Regexp 332
class String 334

> method
module Comparable 368

>= method
module Comparable 368

>> method
class Bignum 265

class Date 404
class Fixnum 286

? (in pattern) 56, 188
@ (instance variable prefix) 190
@@ (class variable prefix) 190
[] method

class Array 32, 254, 255
class Bignum 266
class CGI::Session 458
class CGI 454
class Dir 269
class Fixnum 286
class Hash 289, 290
class MatchData 307
class Method 309
class Net::HTTPResponse

445
class Proc 328
class PStore 415
class String 335
class Struct 349
class Thread 355
class WIN32OLE 460

[]= method
class Array 32, 256
class CGI::Session 458
class Hash 290
class Net::HTTPResponse

445
class PStore 415
class String 335
class Struct 349
class Thread 355
class WIN32OLE 460

[...]

array literal 9, 186
character class 55, 187

\ (line continuation) 181
\& (in substitution) 58
\’ (in substitution) 58
\+ (in substitution) 58
\1...\9

in pattern 57, 188
in substitution 58

\A (in pattern) 187
\B (in pattern) 187
\Z (in pattern) 187
\‘ (in substitution) 58
\b (in pattern) 187
\d (in pattern) 188
\n (newline) 8, 185
\s (in pattern) 188
\w (in pattern) 188
\z (in pattern) 187
^ (in pattern) 54, 55, 187
^ method

class Bignum 265
class FalseClass 274
class Fixnum 286

class NilClass 319
class TrueClass 365

_ _id_ _ method
class Object 321

_ _send_ _ method
class Object 322

_id2ref method
module ObjectSpace 393

` (backquote) method
module Kernel 68, 69, 112,

376
{...}

hash literal 10, 186
in pattern 56, 188
see also Block

|

in file name 113
in pattern 56, 188

| method
class Array 256
class Bignum 265
class FalseClass 274
class Fixnum 286
class NilClass 319
class TrueClass 365

|| (logical or) 73, 201
~ method

class Bignum 265
class Fixnum 286
class Regexp 332
class String 336

-0[octal] (Ruby option) 126

A
-a (Ruby option) 126, 196
abort method

class PStore 415
module Kernel 376

abort_on_exception method
class Thread 107, 352, 355

abort_on_exception=

method
class Thread 352, 355

abs method
class Complex 400
class Numeric 319

abs2 method
class Complex 400

accept method
class Socket 438
class TCPServer 432
class UNIXServer 435

Access control 27, 212
method 313, 314, 317
overriding in subclass 228
see also File, permission

Accessor method 21, 71
Accessors method

class Date 404

INDEX 487

ActiveX see Microsoft
Windows, automation

add method
class ThreadGroup 358

add_observer method
module Observable 424

addr method
class IPSocket 430
class UNIXSocket 434

Alias 30, 192
alias 208
alias_method method

class Module 314
module Kernel 241

alive? method
class Thread 355

all method
class Net::POPMail 447

Ancestor 19
ancestors method

class Module 218, 237, 311
and (logical and) 73, 201
Anonymous class 218, 268
Aoki, Minero 87
Aoyama, Wakou 59
Apache Web server 136

mod_ruby 137
API

Microsoft Windows 150
Ruby see Extend Ruby

APOP authentification 445
append_features method

class Module 315
arg method

class Complex 400
Arithmetic operations

method
class Bignum 265
class Complex 400
class Fixnum 286
class Float 287

arity method
class Method 309
class Proc 328

Array
associative see Hash
creating 31
expanding as method

parameter 64, 206
indexing 32
literal 9, 185
method argument 205

Array class 254
& 254
* 254
+ 254
– 255
<=> 255
<< 255

== 255
=== 255
[] 32, 254, 255
[]= 32, 256
| 256
assoc 256
at 256
clear 257
collect 257
collect! 257
compact 257
compact! 257
concat 257
delete 257
delete_at 258
delete_if 258
each 258
each_index 258
empty? 258
eql? 258
fill 259
first 259
flatten 259
flatten! 259
include? 259
index 259
indexes 261
indices 261
join 261
last 261
length 261
map! 261
new 254
nitems 261
pack 261
pop 262
push 262
rassoc 262
reject! 262
replace 262
reverse 262
reverse! 262
reverse_each 263
rindex 263
shift 263
size 263
slice 263
slice! 263
sort 264
sort! 264
to_a 264
to_ary 264
to_s 264
uniq 264
uniq! 265
unshift 265

Array method
module Kernel 375

ASCII

character literal 46, 183
convert integer to 295

asctime method
class Time 361

ASP see eruby
Assignment 69, 198

attribute 208
parallel 70, 199

assoc method
class Array 256

Associative array see Hash
at method

class Array 256
class Time 359

at_exit method
module Kernel 376

atan2 method
module Math 392, 401

atime method
class File::Stat 282
class File 275, 280

Atom see Symbol
attr method 210

class Module 315
attr_accessor method 210

class Module 315
attr_reader method 210

class Module 315
attr_writer method 210

class Module 315
Attribute

assignment 117, 208
virtual 23
see also Class attribute

autoload method
module Kernel 377

Automation, Windows 150
Autosplit mode 126

B
Backquote character see

`(backquote)
Backtrace see $@, caller
backtrace method

class Exception 273
Backup files, creating 126
basename method

class File 275
BasicSocket class 428

close_read 429
close_write 429
do_not_reverse_lookup

428
do_not_reverse_lookup=

428
getpeername 429
getsockname 429
getsockopt 429
lookup_order 428

488 INDEX

lookup_order= 429
recv 429
send 429
setsockopt 429
shutdown 430

BEGIN {...} 182
begin method

class MatchData 307
class Range 330

=begin...=end 181, 465
begin...end 78, 85, 200, 214
Benchmark module 120, 240
between? method

module Comparable 368
Bignum class 265

% 265
& 265
* 265
** 265
+ 265
– 265
/ 265
<=> 266
<< 265
>> 265
[] 266
^ 265
| 265
~ 265
Arithmetic operations

265
Bit operations 265
literal 45, 183
size 266
to_f 266
to_i 266
to_s 266

Binary data 102, 185, 261, 346
Binary notation 45, 183
bind method

class Socket 438
class UDPSocket 433

Binding
in block 194
GUI events 143

Binding class 197, 266, 477
binding method

module Kernel 239, 266,
377

binmode method
class IO 300
class Net::Telnet 450

binmode= method
class Net::Telnet 450

Bit operations method
class Bignum 265
class Fixnum 286

blksize method
class File::Stat 282

Block 37, 212
as closure 41
and files 100
for busy cursor 145
fork, popen, and subprocess

114, 299, 382
with method 239
as parameter to method 62,

206
parameters 13, 38
performance 120
as transaction 40
variable scope 82, 106, 193
see also Iterator

block_given? method
module Kernel 41, 207, 377

blockdev? method
class File::Stat 282
module FileTest 372

blocks method
class File::Stat 282

Boolean expressions 200
break 80, 204
broadcast method

class ConditionVariable
418

Buffering problems 119
Bug reporting 480
Build environment see Config

module
Busy cursor 145

C
-c (Ruby option) 126
-C directory (Ruby option)

126
C language see Extend Ruby
Calendar 402
Call method

class Win32API 462
call method

class Continuation 269
class Method 239, 309
class Proc 328
class Win32API 462

Callback
from GUI widget 141
Ruby runtime 242
windows event 461
see also Block, closure

callcc method
module Kernel 268, 377

caller method
module Kernel 88, 243, 377

capitalize method
class String 336

capitalize! method
class String 336

case expression 76, 203

Case insensitive (regexp) 187
casefold? method

class Regexp 332
catch method

module Kernel 89, 215, 378
ceil method

class Float 287
center method

class String 336
CGI class 131, 452

[] 454
cookies 454
escape 453
escapeElement 453
escapeHTML 453
has_key? 454
header 454
keys 454
new 453
out 455
params 455
parse 453
pretty 453
rfc1123_date 454
unescape 454
unescapeElement 454
unescapeHTML 454

CGI programming 131–137,
452–458

cookies 133, 452
embedding Ruby (eruby)

135
forms 132, 456
HTML tags 457
mod_ruby 137
session 134, 457

see also Network protocols
CGI::Session class 457

[] 458
[]= 458
delete 458
new 457
update 458

changed method
module Observable 424

changed? method
module Observable 424

Character
convert integer to 295
literal 46, 183

Character class 55
chardev? method

class File::Stat 282
module FileTest 372

chdir method
class Dir 270

Checksum 345
Child process see Process
chmod method

INDEX 489

class File 275, 280
chomp method

class String 336
module Kernel 378

chomp! method
class String 336
module Kernel 378

chop method
class String 337
module Kernel 379

chop! method
class String 337
module Kernel 379

chown method
class File 276, 280

chr method
class Integer 295

chroot method
class Dir 270

Class
anonymous 218, 268
attribute 21, 210
defining 209, 223
extending 18
generator 348
hierarchy 311
instance 6, 210
listing hierarchy 237
metaclass 218
method 25, 222
mixing in module 211
naming 9, 227
object specific 218
singleton 218
variable 24

Class class 217, 267
inherited 242, 267
new 210, 268
superclass 237, 268

class method
class Object 322, 327

class_eval method
class Module 311

class_variables method
class Module 311

Classes
list of methods 252
Array 254
BasicSocket 428
Bignum 265
Binding 197, 266, 477
CGI 131, 452
CGI::Session 457
Class 217, 267
Complex 399
ConditionVariable 111,

418
Continuation 268
Date 401

Delegator 422
Dir 269
Exception 83, 273
FalseClass 274
File 99, 275, 407
File::Stat 281
Fixnum 286
Float 287
GetoptLong 409
Hash 289
Integer 295
IO 99, 297
IPSocket 430
IRB::Frame 477
MatchData 60, 307, 331,

332
Method 239, 309
Module 310
Mutex 109, 417
Net::APOP 447
Net::FTP 439
Net::HTTP 443
Net::HTTPResponse 445
Net::POP 445
Net::POPMail 447
Net::SMTP 448
Net::Telnet 449
NilClass 318
Numeric 319
Object 20, 321
Proc 42, 62, 213, 309, 327
Protocol 439
PStore 414
Range 185, 329
Regexp 60, 331
Socket 435
SOCKSSocket 431
String 47, 184, 333
Struct 348
Struct::Tms 351
Symbol 22, 198, 340, 351
TCPServer 432
TCPSocket 430
Tempfile 416
Thread 352
ThreadGroup 358
Time 359
TrueClass 365
UDPSocket 432
UNIXServer 435
UNIXSocket 434
WeakRef 419
Win32API 150, 461
WIN32OLE 150, 459
WIN32OLE_EVENT 460

clear method
class Array 257
class Hash 290

clone method

class IO 300
class Module 312
class Object 322

close method
class Dir 271
class IO 300
class Net::FTP 440
class SOCKSSocket 431
class Tempfile 417

close_read method
class BasicSocket 429
class IO 300

close_write method
class BasicSocket 429
class IO 300

closed? method
class IO 300
class Net::FTP 440

Closure see Block
cmd method

class Net::Telnet 450
cmp method

class File 407
Code profiler 120
code method

class Net::HTTPResponse
445

Coding system (ASCII, EUC,
SJIS, UTF-8) 126, 181n,
185n

coerce method
class Numeric 319

Coffee coaster
attractive 2

collect method
class Array 257
module Enumerable 369

collect! method
class Array 257

COM see Microsoft Windows,
automation

Command (type of method) 63n
Command expansion 68

see also ` (backquote)
Command line 125

options 126–127
parsing 409
see also ARGV

Comment 181
regular expression 189

commit method
class PStore 415

Common Gateway Interface see
CGI programming

compact method
class Array 257

compact! method
class Array 257

Comparable module 368

490 INDEX

< 368
<= 368
== 368
> 368
>= 368
between? 368
Comparisons 368

compare method
class File 407

Comparison operators 201
see also <=>

Comparisons method
module Comparable 368

compile method
class Regexp 331

Complex class 399
<=> 400
== 400
abs 400
abs2 400
arg 400
Arithmetic operations

400
conjugate 400
image 400
new 399
polar 400
real 401
to_f 401
to_i 401
to_r 401
to_s 401

COMSPEC 129
concat method

class Array 257
class String 337

Condition variable see Thread,
synchronization

Conditional expression 75, 202
see also Range

ConditionVariable class
111, 418

broadcast 418
signal 418
wait 418

Config module 130
conjugate method

class Complex 400
connect method

class Net::FTP 440
class Socket 438
class UDPSocket 433
class WIN32OLE 459

const_defined? method
class Module 312

const_get method
class Module 312

const_load method
class WIN32OLE 459

const_set method
class Module 312

Constant 192
class name 227
listing in module 237
scope 192

Constants
DATA 182, 197
FALSE 197
false 72, 197, 200
NIL 197
nil 72, 197, 200
RUBY_PLATFORM 197
RUBY_RELEASE_DATE 197
RUBY_VERSION 197
STDERR 197
STDIN 197
STDOUT 197
TOPLEVEL_BINDING 197
TRUE 197
true 72, 197

constants method
class Module 310, 312

Constructor 6, 17
private 26

Contact, authors’ e-mail xxviii
Containers see Array and Hash
Continuation class 268

call 269
Control character

\n etc. 46, 183, 185
Conventions, typographic xxx
Cookies see CGI programming,

cookies
cookies method

class CGI 454
Coordinated Universal Time

359
copy method

class File 407
--copyright (Ruby option)

126
CORBA see Distributed Ruby
cos method

module Math 392, 401
count method

class String 337
count_observers method

module Observable 424
cp method

class File 407
CPU times 351
create_makefile method

module mkmf 164, 412
Critical section see Thread,

synchronization
critical method

class Thread 353
critical= method

class Thread 109, 353
crypt method

class String 337
ctime method

class File::Stat 282
class File 276, 280
class Time 361

Current directory 271
current method

class Thread 353
CVS access to Ruby xxvii
cwday method

class Date 404
cweek method

class Date 404
cwyear method

class Date 404
cygwin32 149

D
-d (Ruby option) 196
-d, --debug (Ruby option)

126
DATA constant 182, 197
Datagram see Network

protocols, UDP
Date class 401

+ 404
– 404
<=> 404
<< 404
=== 404
>> 404
Accessors 404
cwday 404
cweek 404
cwyear 404
day 404
downto 405
england 405
exist2? 402
exist? 402
existw? 402
gregorian 405
gregorian_leap? 403
italy 405
jd 405
julian 405
julian_leap? 403
leap? 403, 405
mday 404
mjd 405
mon 404
month 404
new 403
new1 403
new2 403
new3 403
newsg 405

INDEX 491

neww 404
next 405
ns? 405
os? 405
parsing 413
sg 405
step 405
succ 405
to_s 406
today 404
upto 406
wday 404
yday 404
year 404

see also Time class
Date module 359
day method

class Date 404
class Time 361

DCOM see Microsoft
Windows, automation

Debug mode 126
debug_mode method

class Net::FTP 440
debug_mode= method

class Net::FTP 440
Debugger 115

commands 122f
def (method definition) 61
Default parameters 61, 205
default method

class Hash 290
default= method

class Hash 290
define_finalizer method

module ObjectSpace 394
defined? operator 73, 201
Delegation 422
Delegator class 422
delete method

class Array 257
class CGI::Session 458
class Dir 270
class File 276
class Hash 290
class Net::POPMail 447
class String 337

delete! method
class Net::POPMail 447
class String 337

delete_at method
class Array 258

delete_if method
class Array 258
class Hash 291

delete_observer method
module Observable 424

delete_observers method
module Observable 424

Delimited string 182
Design Pattern see Patterns
detect method

module Enumerable 369
dev method

class File::Stat 282
Dictionary see Hash
Dir class 269

[] 269
chdir 270
chroot 270
close 271
delete 270
each 271
entries 270
foreach 270
getwd 271
glob 271
mkdir 271
new 271
open 271
pwd 271
read 272
rewind 272
rmdir 271
seek 272
tell 272
unlink 271

see also Find module
dir method

class Net::FTP 440
dir_config method

module mkmf 164, 412
Directories

search path 164
searched 129

directory? method
class File::Stat 282
module FileTest 372

dirname method
class File 276

disable method
module GC 375

Dispatch table 238
display method

class Object 322
divmod method

class Numeric 320
DLL, accessing API 150
DLN_LIBRARY_PATH 129
do...end see Block
do_not_reverse_lookup

method
class BasicSocket 428

do_not_reverse_lookup=

method
class BasicSocket 428

Documentation
doc string example 225

embedded 181, 465
Dotted quad see Network

protocols
Double-quoted string 47, 184
downcase method

class String 338
downcase! method

class String 338
Download Ruby xxvi

sites 480
downto method

class Date 405
class Integer 295

drb see Distributed Ruby
_dump 245, 391
dump method

class String 338
module Marshal 244, 391

dup method
class Object 322

Dynamic
compilation 379
definitions 223
linking 167
method invocation 238
see also Reflection

E
-e ’command ’ (Ruby option)

126
each method

class Array 258
class Dir 271
class GetoptLong 410
class Hash 291
class IO 301
class Net::HTTPResponse

445
class Net::POP 446
class Range 330
class String 338
class Struct 350
class WIN32OLE 460
module Enumerable 39,

369
each_byte method

class IO 301
class String 338

each_index method
class Array 258

each_key method
class Hash 291

each_line method
class IO 301
class String 338

each_object method
module ObjectSpace 218,

236, 237, 394
each_pair method

492 INDEX

class Hash 291
each_value method

class Hash 291
each_with_index method

module Enumerable 369
Editor

run Ruby in 117
egid method

module Process 394
egid= method

module Process 394
Eiffel

feature renaming 241n
once modifer 226

Element reference ([]) 208
else (exceptions) 86, 214

see also if, case

Emacs 117
with irb 473n
tag file 476

E-mail
address for feedback xxviii
fetching with POP 445
sending with SMTP 448

Embed Ruby
in HTML etc. see eruby
interpreter in application 167

Embedded documentation 181,
465

empty? method
class Array 258
class Hash 291
class String 338

enable method
module GC 375

Encryption 337
__END__ 182, 197
END {...} 182
end method

class MatchData 307
class Range 330

england method
class Date 405

English names for $ variables
194, 406

ensure (exceptions) 86, 214
entries method

class Dir 270
module Enumerable 369

Enumerable module 96, 369
collect 369
detect 369
each 39, 369
each_with_index 369
entries 369
find 369
find_all 369
grep 369
include? 370

map 370
max 370
member? 370
min 370
reject 370
select 370
sort 371
to_a 371

Environment variables 128
COMSPEC 129
DLN_LIBRARY_PATH 129
HOME 270, 276
LOGDIR 270
PATH 127
POSIXLY_CORRECT 409
RUBYLIB 129, 234
RUBYLIB_PREFIX 129
RUBYOPT 129, 234
RUBYPATH 127, 129
RUBYSHELL 129
SHELL 129
SOCKS_SERVER 440
TMPDIR 416

see also ENV variable
eof method

class IO 301
eof? method

class IO 301
Epoch 359
eql? method 74

class Array 258
class Numeric 320
class Object 322

equal? method 74
class Object 322

Errno module 372
Error handling see Exception
error? method

class GetoptLong 410
error_message method

class GetoptLong 410
Errors in book, reporting xxviii
eruby 135–137

in Apache 136
see also CGI programming

escape method
class CGI 453
class Regexp 331

escapeElement method
class CGI 453

escapeHTML method
class CGI 453

Escaping characters see
Quoting

euid method
module Process 395

euid= method
module Process 395

eval method

module Kernel 239, 266,
379

Event binding see GUI
programming

Example printer 476
Excel, automating Microsoft

151
Exception 83–89, 213

in extensions 173
handling 85
hierarchy 84f
NameError 193, 215
raising 87, 384
RuntimeError 87, 213
SecurityError 231
StandardError 84, 86, 214
stored in $! 194
SystemCallError 372
SystemExit 128, 380
in thread 107, 352
TypeError 30, 245

Exception class 83, 273
backtrace 273
exception 273
message 273
set_backtrace 273

exception method
class Exception 273

exclude_end? method
class Range 330

exec method
module Kernel 379

executable? method
class File::Stat 282
module FileTest 373

executable_real? method
class File::Stat 283
module FileTest 373

Execution
environment 228
profiler 120
tracing 242

exist2? method
class Date 402

exist? method
class Date 402
module FileTest 373

exists? method
module FileTest 373

existw? method
class Date 402

Exit code see $?
exit method

class Thread 353, 355
module Kernel 128, 380

exit! method
module Kernel 380
module Process 395

exp method

INDEX 493

module Math 392, 401
expand_path method

class File 276
Expression 67–82, 198–204

boolean 72, 200
case 76, 203
if 74, 202
range as boolean 74
substitution in string 185
ternary 75, 202

extconf.rb 164
see also mkmf module

Extend Ruby 153–177
building extensions 163

see also mkmf

module
C-constructor 161
call method API 172
create object 156
datatype conversion API 157
datatype wrapping API 159
define methods API 170
define objects API 169
embedded Ruby API 168
embedding 167
example code 161
exception API 173
garbage collection 159
initialize 156
internal types 153
iterator API 174
linking 167
memory allocation API 163
object status API 175
variable API 171, 175
variables 157

extend method
class Object 222, 323

extend_object method
class Module 242, 315

Extended mode (regexp) 187
Extending classes 18

F
-F pattern (Ruby option)

126, 195
Factory method 26
fail method

module Kernel 380
FALSE constant 197
false constant 72, 197, 200
FalseClass class 274

& 274
^ 274
| 274

fcntl method
class IO 301

Feedback, e-mail address xxviii
fetch method

class Hash 291
Fibonacci series (fibUpTo) 37
Field separator see $;
File

associations under Windows
150

and blocks 100
directory operations see Dir

class
directory traversal 407
expanding names 269, 276
including source 96, 126,

129
installing files 407
lock modes 281f
modes 298f
open modes 279f
opening 99
owner 276, 280, 283–285
pathname 278f, 297
permission 275, 279
reading 100
temporary 416
tests 389
writing 101

File class 99, 275, 407
atime 275, 280
basename 275
chmod 275, 280
chown 276, 280
cmp 407
compare 407
copy 407
cp 407
ctime 276, 280
delete 276
dirname 276
expand_path 276
flock 280
ftype 276
install 408
join 277
link 277
lstat 277, 280
makedirs 408
mkpath 408
move 408
mtime 277, 280
mv 408
new 99, 277
open 100, 277
path 281
readlink 278
rename 278
rm_f 408
safe_unlink 408
size 278
split 278
stat 278

symlink 278
syscopy 408
truncate 278, 281
umask 279
unlink 279
utime 279

File Transfer Protocol see
Network protocols, ftp

File::Stat class 281
<=> 281
atime 282
blksize 282
blockdev? 282
blocks 282
chardev? 282
ctime 282
dev 282
directory? 282
executable? 282
executable_real? 283
file? 283
ftype 283
gid 283
grpowned? 283
ino 283
mode 283
mtime 283
nlink 284
owned? 284
pipe? 284
rdev 284
readable? 284
readable_real? 284
setgid? 284
setuid? 284
size 284
size? 285
socket? 285
sticky? 285
symlink? 285
uid 285
writable? 285
writable_real? 285
zero? 285

file? method
class File::Stat 283
module FileTest 373

fileno method
class IO 301

FileTest module 372
blockdev? 372
chardev? 372
directory? 372
executable? 373
executable_real? 373
exist? 373
exists? 373
file? 373
grpowned? 373

494 INDEX

owned? 373
pipe? 373
readable? 373
readable_real? 373
setgid? 374
setuid? 374
size 374
size? 374
socket? 374
sticky? 374
symlink? 374
writable? 374
writable_real? 374
zero? 374

fill method
class Array 259

Find module 407
find 407
prune 407

find method
module Enumerable 369
module Find 407

find_all method
module Enumerable 369

find_library method
module mkmf 166, 412

finish method
class Net::POP 446

finite? method
class Float 288

first method
class Array 259
class Range 330

Fixnum class 286
% 286
& 286
* 286
** 286
+ 286
– 286
/ 286
<=> 286
<< 286
>> 286
[] 286
^ 286
| 286
~ 286
Arithmetic operations

286
Bit operations 286
id2name 287
literal 45, 183
range of 45
size 287
to_f 287
to_i 287
to_s 287

flatten method

class Array 259
flatten! method

class Array 259
Float class 287

% 287
* 287
** 287
+ 287
– 287
/ 287
<=> 287
Arithmetic operations

287
ceil 287
finite? 288
floor 288
infinite? 288
literal 46, 183
nan? 288
round 288
to_f 288
to_i 288
to_s 289

Float method
module Kernel 376

flock method
class File 280

floor method
class Float 288

flush method
class IO 301

for...in loop 79, 204
for_fd method

class Socket 436
foreach method

class Dir 270
class IO 297

Fork see Process
fork method

class Thread 353
module Kernel 380
module Process 395

format method
module Kernel 381

Forms see CGI programming,
forms

freeze method
class Object 119, 230, 323

frexp method
module Math 392

frozen? method
class Object 323

FTools library 407
ftp see Network protocols, ftp
ftp site for Ruby xxvi
ftw 407
ftype method

class File::Stat 283
class File 276

Funaba, Tadayoshi 225
Function see Method
Function pointer 239

G
Garbage collection 147, 375,

393, 419
internals 159

garbage_collect method
module GC 375
module ObjectSpace 394

GC module 375
disable 375
enable 375
garbage_collect 375
start 375

General delimited string 182
Geometry management 143
get method

class GetoptLong 410
class Net::HTTP 444

get_option method
class GetoptLong 410

getaddress method
class IPSocket 430

getaddrinfo method
class Socket 436

getbinaryfile method
class Net::FTP 440

getc method
class IO 302

gethostbyaddr method
class Socket 436

gethostbyname method
class Socket 437
class TCPSocket 430

gethostname method
class Socket 437

getnameinfo method
class Socket 437

GetoptLong class 409
each 410
error? 410
error_message 410
get 410
get_option 410
new 410
ordering 411
ordering= 411
quiet 411
quiet= 411
quiet? 411
set_options 411
terminate 411
terminated? 412

getpeername method
class BasicSocket 429

getpgid method
module Process 395

INDEX 495

getpgrp method
module Process 395

getpriority method
module Process 395

gets method
class IO 302
module Kernel 195, 381

getservbyname method
class Socket 437

getsockname method
class BasicSocket 429

getsockopt method
class BasicSocket 429

Getter method 21
gettextfile method

class Net::FTP 441
getwd method

class Dir 271
gid method

class File::Stat 283
module Process 395

gid= method
module Process 395

GIF 143, 146
Glob see File, expanding names
glob method

class Dir 271
Global variables see Variables
global_variables method

module Kernel 381
gm method

class Time 359
GMT 359
gmt? method

class Time 361
gmtime method

class Time 361
GNU Win32 149
Graphic User Interface see GUI

programming
Greedy patterns 56
Greenwich Mean Time 359
gregorian method

class Date 405
gregorian_leap? method

class Date 403
grep method

module Enumerable 369
grpowned? method

class File::Stat 283
module FileTest 373

gsub method
class String 58, 339
module Kernel 381

gsub! method
class String 339
module Kernel 381

GUI programming 139–148
callback from widget 141

events 143
geometry management 143
scrolling 145
widgets 140–142

H
-h, --help (Ruby option) 126
has_key? method

class CGI 454
class Hash 292

has_value? method
class Hash 292

Hash 33
creating 33
default value 10
indexing 33
key requirements 186
literal 10, 186
as method parameter 206
as method parameter 65

Hash class 289
== 289
[] 289, 290
[]= 290
=> 33
clear 290
default 290
default= 290
delete 290
delete_if 291
each 291
each_key 291
each_pair 291
each_value 291
empty? 291
fetch 291
has_key? 292
has_value? 292
include? 292
index 292
indexes 292
indices 293
invert 293
key? 293
keys 293
length 293
member? 293
new 289
rehash 186, 293
reject 294
reject! 294
replace 294
shift 294
size 294
sort 294
store 294
to_a 294
to_s 295
update 295

value? 295
values 295

hash method
class Object 323
class String 339

have_func method
module mkmf 166, 412

have_header method
module mkmf 166, 413

have_library method
module mkmf 166, 413

head method
class Net::HTTP 444

header method
class CGI 454
class Net::POPMail 447

Here document 47, 184
Hex notation 45, 183
hex method

class String 339
Hintze, Clemens 191
HOME 270, 276
hour method

class Time 361
HTML see CGI programming
HTTP see Network protocols,

HTTP

I
/i regexp option 187
-i [extension] (Ruby

option) 126, 196
-I directories (Ruby

option) 126, 196
id method

class Object 324
id2name method

class Fixnum 287
class Symbol 352

Identifier
object id 6, 237
see also Variable

IEEE floating point 287
-Idirectories (Ruby option)

130
if expression 74, 202

as modifier 75, 202
Igpay Atinlay see Pig Latin
im method

class Numeric 399
image method

class Complex 400
Imaginary numbers 399
In-place edit mode 126
include method 93

class Module 211, 316
include? method

class Array 259
class Hash 292

496 INDEX

class String 340
module Enumerable 370

included_modules method
class Module 312

Including source files see File,
including source

Incremental development 119
index method

class Array 259
class Hash 292
class String 340

indexes method
class Array 261
class Hash 292

Indexing
array 32
hash 33

indices method
class Array 261
class Hash 293

infinite? method
class Float 288

Inheritance 19, 209
and access control 228
method lookup 207, 218
single versus multiple 21

see also Delegation;
Module, mixin

inherited method
class Class 242, 267

initialize method 17, 28,
210

inject method
Ruby 40, 94
Smalltalk 39

ino method
class File::Stat 283

Input/Output see I/O
inspect method

class Object 324
class Symbol 352

install method
class File 408

Installing files 407
Installing Ruby xxvi
Instance

class instance method see
Object

method method see Method
variable see Variable

instance_eval method
class Object 324

instance_methods method
class Module 312

instance_of? method
class Object 324

instance_variables method
class Object 324

Integer class 295

chr 295
downto 295
integer? 296
next 296
step 296
succ 296
times 296
upto 296

see also Fixnum, Bignum
Integer method

module Kernel 376
integer? method

class Integer 296
class Numeric 320

Interactive Ruby see irb
Intern see Symbol
intern method

class String 340
Internet see Network protocols
Interval see Range
Introspection see Reflection
invert method

class Hash 293
invoke method

class WIN32OLE 460
Invoking see Method, calling
IO class 99, 297

<< 102, 299
binmode 300
clone 300
close 300
close_read 300
close_write 300
closed? 300
each 301
each_byte 301
each_line 301
eof 301
eof? 301
fcntl 301
fileno 301
flush 301
foreach 297
getc 302
gets 302
ioctl 302
isatty 302
lineno 302
lineno= 302
new 298
pid 303
pipe 298
popen 112, 299
pos 303
pos= 303
print 303
printf 303
putc 304
puts 304

read 304
readchar 304
readline 304
readlines 299, 304
reopen 304
rewind 305
seek 305
select 299
stat 305
sync 305
sync= 305
sysread 306
syswrite 306
tell 306
to_i 306
to_io 306
tty? 306
ungetc 306
write 306

I/O 99–103
binary data 102
buffering problems 119

see also classes File, IO,
and Network Protocols

ioctl method
class IO 302

IP, IPV6 see Network protocols
IPSocket class 430

addr 430
getaddress 430
peeraddr 430

irb 116, 471–476
IRB::Frame class 477
is_a? method

class Object 324
isatty method

class IO 302
isdst method

class Time 361
ISO 8601 date 402, 413
italy method

class Date 405
Iterator 37, 78

in extension 174
for reading files 100
see also Block

iterator? method
module Kernel 382

J
JavaSpaces see Distributed

Ruby
jd method

class Date 405
JINI see Distributed Ruby
join method

class Array 261
class File 277
class Thread 106, 355

INDEX 497

JSP see eruby
Jukebox example 17–25, 41–43,

158–163
julian method

class Date 405
julian_leap? method

class Date 403

K
-K kcode (Ruby option) 126,

196
kcode method

class Regexp 332
Kernel module 375

` (backquote) 68, 69,
112, 376

abort 376
alias_method 241
Array 375
at_exit 376
autoload 377
binding 239, 266, 377
block_given? 41, 207, 377
callcc 268, 377
caller 88, 243, 377
catch 89, 215, 378
chomp 378
chomp! 378
chop 379
chop! 379
eval 239, 266, 379
exec 379
exit 128, 380
exit! 380
fail 380
Float 376
fork 380
format 381
gets 195, 381
global_variables 381
gsub 381
gsub! 381
Integer 376
iterator? 382
lambda 382
load 129, 196, 382
local_variables 382
loop 382
method_missing 207, 217
open 382
p 383
print 195, 384
printf 195, 384
proc 42, 384
putc 384
puts 384
raise 87, 213, 384
rand 385
readline 195, 385

readlines 385
require 129, 196, 385
scan 385
select 385
set_trace_func 242, 266,

386
singleton_method_added

242, 386
sleep 386
split 126, 386
sprintf 387
srand 387
String 376
sub 387
sub! 387
syscall 387
system 112, 389
test 389
throw 89, 215, 389
trace_var 389
trap 113, 389
untrace_var 391

see also Object class
key? method

class Hash 293
class Net::HTTPResponse

445
class Thread 356

keys method
class CGI 454
class Hash 293

Keyword argument 65
Keywords 191
kill method

class Thread 353, 356
module Process 395

kind_of? method
class Object 324

Kosimizu, Tomoyuki 443

L
-l (Ruby option) 127, 196
lambda method

module Kernel 382
last method

class Array 261
class Range 330

last_match method
class Regexp 331

lastresp method
class Net::FTP 441

Layout, source code 181
ldexp method

module Math 393
Leap seconds 362n
leap? method

class Date 403, 405
Least Surprise

principle xxiv

length method
class Array 261
class Hash 293
class MatchData 307
class String 340
class Struct 350

Library
cgi 452
cgi/session 457
complex 399
date 401
delegate 422
English 406
find 407
ftools 407
getoptlong 409
mkmf 412
net/ftp 439
net/http 443
net/pop 445
net/smtp 448
net/telnet 449
observer 424
parsedate 413
profile 414
pstore 414
singleton 426
socket 427
tempfile 416
thread 417
timeout 419
weakref 419
Win32API 461
win32ole 459, 460

Linda see Distributed Ruby
Line continuation 181
lineno method

class IO 302
lineno= method

class IO 302
link method

class File 277
List see Array
list method

class Net::FTP 441
class ThreadGroup 358
class Thread 353

listen method
class Socket 438

Listener see Observer
Literal

array 185
ASCII 46, 183
Bignum 45, 183
Fixnum 45, 183
Float 46, 183
range 51, 185
regular expression 53, 187
String 47, 184

498 INDEX

symbol 186
ljust method

class String 340
_load 245, 391
load method 96

module Kernel 129, 196,
382

module Marshal 244, 392
Local variable see Variable
local method

class Time 359
local_variables method

module Kernel 382
localtime method

class Time 361
lock method

class Mutex 417
locked? method

class Mutex 417
Locking see File class, flock
log method

module Math 393, 401
log10 method

module Math 393, 401
LOGDIR 270
login method

class Net::FTP 441
class Net::Telnet 450

lookup_order method
class BasicSocket 428

lookup_order= method
class BasicSocket 429

Loop 295, 296
see also Iterator

loop method 79, 204
loop method

module Kernel 382
ls method

class Net::FTP 441
lstat method

class File 277, 280
Lvalue 69

M
/m regexp option 187
Maeda, Shugo 135
Mailing lists 480
mails method

class Net::POP 446
Main program 228
main method

class Thread 354
makedirs method

class File 408
map method

module Enumerable 370
map! method

class Array 261

Marshal module 244–245,
391–392

dump 244, 391
limitations 391
load 244, 392
restore 392

match method
class Regexp 53, 60, 332

MatchData class 60, 307, 331,
332

[] 307
begin 307
end 307
length 307
offset 307
post_match 308
pre_match 308
size 308
string 308
to_a 308
to_s 308

see also $~

Math module 392
atan2 392, 401
cos 392, 401
exp 392, 401
frexp 392
ldexp 393
log 393, 401
log10 393, 401
sin 393, 401
sqrt 393, 401
tan 393, 401

Matsumoto, Yukihiro (Matz)
xxv

max method
module Enumerable 370

mday method
class Date 404
class Time 362

member? method
class Hash 293
module Enumerable 370

members method
class Struct 349, 350

Message
receiver 6
sending 6, 19

message method
class Exception 273
class Net::HTTPResponse

445
message_loop method

class WIN32OLE_EVENT 461
Meta character 46, 183
Metaclass 218
Metaprogramming see

Reflection
Method 61–66

access control 27, 313, 314,
317

aliasing 208
arguments 205
block as parameter 62
call, in extension 172
calling 63, 206
calling dynamically 238
class 25, 222
defining 61, 204
in extension 170
getter 21
instance 6
with iterator 239
keyword argument 65
module 92
naming 9, 61, 204
nested method definition 205
as operator 67
parameters 61
private 63
renaming 240
return value 62, 207
setter 22, 71
vs. variable name 191

Method class 239, 309
[] 309
arity 309
call 239, 309
to_proc 309

method method
class Object 309, 325

method_added method
class Module 242, 316

method_defined? method
class Module 313

method_missing method
class Object 325
module Kernel 207, 217

methods method
class Object 236, 325

Meyer, Bertrand 23
Microsoft Windows 149–152,

459–462
accessing API 150
automation 150
event sink 460
file associations 150
running Ruby 149
scripting see automation

(above)
min method

class Time 362
module Enumerable 370

Mixin see Module
mjd method

class Date 405
mkdir method

class Dir 271

INDEX 499

mkmf module 412
building extensions with 163
create_makefile 164,

412
dir_config 164, 412
find_library 166, 412
have_func 166, 412
have_header 166, 413
have_library 166, 413

mkpath method
class File 408

mktime method
class Time 360

mod_ruby 137
mode method

class File::Stat 283
Module 91–97

constant 92
creating extension see

Extend Ruby
defining 211
function 211
include 93
instance variable 94
as mixin 92, 211, 220
as namespace 91
naming 9
require 93
wrap 232

Module class 310
<, <=, >, >= 311
<=> 311
=== 311
alias_method 314
ancestors 218, 237, 311
append_features 315
attr 315
attr_accessor 315
attr_reader 315
attr_writer 315
class_eval 311
class_variables 311
clone 312
const_defined? 312
const_get 312
const_set 312
constants 310, 312
extend_object 242, 315
include 211, 316
included_modules 312
instance_methods 312
method_added 242, 316
method_defined? 313
module_eval 313
module_function 212,

316
name 313
nesting 310
new 310

private 317
private_class_method

26, 313
private_instance_

methods

314
protected 317
protected_instance_

methods

314
public 317
public_class_method

314
public_instance_

methods

314
remove_const 317
remove_method 318
undef_method 318

module_eval method
class Module 313

module_function method
class Module 212, 316

Modules
list of methods 367
Benchmark 120, 240
Comparable 368
Config 130
Date 359
Enumerable 96, 369
Errno 372
FileTest 372
Find 407
GC 375
Kernel 375
Marshal 391
Math 392
mkmf 412
ObjectSpace 393
ParseDate 359, 413
Process 394

modulo method
class Numeric 320

mon method
class Date 404
class Time 362

month method
class Date 404
class Time 362

move method
class File 408

mswin32 149
mtime method

class File::Stat 283
class File 277, 280
class Net::FTP 441

Multiline mode (regexp) 187
Multipart forms 456
Multiple inheritance 21

see also Module, mixin
Multithreading see Thread
Music on hold 479
Mutex class 109, 417

lock 417
locked? 417
synchronize 417
try_lock 418
unlock 418

Mutual exclusion see Thread,
synchronization

mv method
class File 408

“My Way” 19

N
-n (Ruby option) 127
name method

class Module 313
Namespace see Module
Naming conventions 9, 190

file path names 297
method names 61

nan? method
class Float 288

Nested assignment 72
nesting method

class Module 310
Net::APOP class 447

start 447
Net::FTP class 439

close 440
closed? 440
connect 440
debug_mode 440
debug_mode= 440
dir 440
getbinaryfile 440
gettextfile 441
lastresp 441
list 441
login 441
ls 441
mtime 441
new 439
open 439
passive 441
passive= 441
putbinaryfile 441
puttextfile 441
resume 442
resume= 442
retrbinary 442
retrlines 442
return_code 442
Server commands 440
storbinary 442
storlines 442
welcome 442

500 INDEX

Net::HTTP class 443
get 444
head 444
new 443
port 443
post 444
start 444

Net::HTTPResponse class
445

[] 445
[]= 445
code 445
each 445
key? 445
message 445

Net::POP class 445
each 446
finish 446
mails 446
new 446
start 446

Net::POPMail class 447
all 447
delete 447
delete! 447
header 447
size 447
top 447
uidl 447

Net::SMTP class 448
new 448
ready 448
sendmail 448
start 448, 449

Net::Telnet class 449
binmode 450
binmode= 450
cmd 450
login 450
new 450
print 451
telnetmode 451
telnetmode= 451
waitfor 451
write 451

Network protocols 427–458
class hierarchy 429
domain 427
domain socket 434
ftp 439
hostName 427
HTTP 443
IP 430
POP 445
port 428
protocol 427
server 432, 435
SMTP 448
socket 428, 435

SOCKS 431
TCP 430
telnet 449
type 427
UDP 432

new method
see also Constructor

new method
class Array 254
class CGI::Session 457
class CGI 453
class Class 210, 268
class Complex 399
class Date 403
class Dir 271
class File 99, 277
class GetoptLong 410
class Hash 289
class IO 298
class Module 310
class Net::FTP 439
class Net::HTTP 443
class Net::POP 446
class Net::SMTP 448
class Net::Telnet 450
class Proc 328
class PStore 415
class Range 329
class Regexp 331
class Socket 437
class SOCKSSocket 431
class String 333
class Struct 348
class TCPServer 432
class TCPSocket 431
class Tempfile 416
class ThreadGroup 358
class Thread 354
class Time 360
class UDPSocket 433
class UNIXServer 435
class UNIXSocket 434
class WeakRef 420
class Win32API 462
class WIN32OLE_EVENT 461
class WIN32OLE 459

new1 method
class Date 403

new2 method
class Date 403

new3 method
class Date 403

Newline (\n) 8, 185
newsg method

class Date 405
Newsgroup 480
neww method

class Date 404
next 80, 204

next method
class Date 405
class Integer 296
class String 341

next! method
class String 341

NIL constant 197
nil constant 72, 197, 200
nil? method

class NilClass 319
class Object 326

NilClass class 318
& 318
^ 319
| 319
nil? 319
to_a 319
to_i 319
to_s 319

nitems method
class Array 261

nlink method
class File::Stat 284

nonzero? method
class Numeric 320

not (logical not) 73, 201
Notation xxx

binary, hex, octal 45, 183
notify_observers method

module Observable 424
now method

class Time 360
ns? method

class Date 405
NTP (Network Time Protocol)

449
Numeric class 319

+@ 319
–@ 319
abs 319
coerce 319
divmod 320
eql? 320
im 399
integer? 320
modulo 320
nonzero? 320
remainder 320
zero? 320

O
/o regexp option 187
Object 6

aliasing 30, 192
creation 17, 210, 241
extending 218, 222
finalizer 393
freezing 229
id 6, 237, 393

INDEX 501

immediate 154, 236, 286
listing active 236
listing methods in 236
persistence 414
tainting 232

Object class 20, 321
== 321
=== 321
=~ 321
_ _id_ _ 321
_ _send_ _ 322
class 322, 327
clone 322
display 322
dup 322
eql? 322
equal? 322
extend 222, 323
freeze 119, 230, 323
frozen? 323
hash 323
id 324
inspect 324
instance_eval 324
instance_of? 324
instance_variables 324
is_a? 324
kind_of? 324
method 309, 325
method_missing 325
methods 236, 325
nil? 326
private_methods 326
protected_methods 326
public_methods 326
respond_to? 236, 326
send 326
singleton_methods 326
taint 327
tainted? 327
to_a 327
to_s 18, 327
untaint 327

see also Kernel module
Object-oriented terminology 5
ObjectSpace module 393

_id2ref 393
define_finalizer 394
each_object 218, 236,

237, 394
garbage_collect 394
undefine_finalizer 394

Observable module
add_observer 424
changed 424
changed? 424
count_observers 424
delete_observer 424
delete_observers 424

notify_observers 424
Observer pattern 424
oct method

class String 341
Octal notation 45, 183
offset method

class MatchData 307
OLE see Microsoft Windows,

automation
on_event method

class WIN32OLE_EVENT 461
once example 226
Once option (regexp) 187
OO see Object-oriented
open method

class Dir 271
class File 100, 277
class Net::FTP 439
class Socket 437
class SOCKSSocket 431
class TCPServer 432
class TCPSocket 431
class Tempfile 417
class UDPSocket 433
class UNIXServer 435
class UNIXSocket 434
module Kernel 382

Operating system errors 372
Operator

as method call 67, 208
precedence 199

Optimizing see Performance
Option

command line see Command
line

or (logical or) 73, 201
ordering method

class GetoptLong 411
ordering= method

class GetoptLong 411
os? method

class Date 405
out method

class CGI 455
owned? method

class File::Stat 284
module FileTest 373

Ownership, file see File, owner

P
-p (Ruby option) 127, 196
p method

module Kernel 383
pack method

class Array 261
pair method

class Socket 437
Paragraph mode 126
Parallel assignment 70, 199

Parameter
default 61
to block 13

params method
class CGI 455

Parent-child 19
Parse error 117
parse method

class CGI 453
ParseDate module 359, 413

parsedate 413
see also Time class

parsedate method
module ParseDate 413

pass method
class Thread 354

passive method
class Net::FTP 441

passive= method
class Net::FTP 441

PATH 127
path method

class File 281
class PStore 415
class Tempfile 417
class UNIXSocket 434

Pathname see File, pathname
Pattern see Regular expression
Patterns

factory 26
observer 424
singleton 26, 426
state 423
visitor 421

peeraddr method
class IPSocket 430
class UNIXSocket 434

Performance 38, 119
caching method values 225
CGI 137
dynamic method invocation

240
profiling 120, 414
and thread synchronization

110
windows automation 152

Perl/Tk see GUI programming
Permission see File, permission
Persistent object storage 414
PHP see eruby
pid method

class IO 303
module Process 396

Pig Latin 112, 142
Pipe see IO.pipe, IO.popen

pipe method
class IO 298

pipe? method
class File::Stat 284

502 INDEX

module FileTest 373
polar method

class Complex 400
pop method

class Array 262
popen method

class IO 112, 299
port method

class Net::HTTP 443
pos method

class IO 303
pos= method

class IO 303
POSIXLY_CORRECT 409
Post Office Protocol (POP) see

Network protocols, POP
post method

class Net::HTTP 444
post_match method

class MatchData 308
ppid method

module Process 396
Pragmatic Programmer

e-mail address xxviii
Pre-defined variables see

Variables
pre_match method

class MatchData 308
Precedence

do...end vs {} 212
of operators 199

pretty method
class CGI 453

Principle of Least Surprise xxiv
print method

class IO 303
class Net::Telnet 451
module Kernel 195, 384

printf method
class IO 303
module Kernel 195, 384

priority method
class Thread 356

priority= method
class Thread 356

Private see Access control
private method

class Module 317
private_class_method

method
class Module 26, 313

private_instance_methods

method
class Module 314

private_methods method
class Object 326

Proc class 42, 62, 213, 309,
327

[] 328

arity 328
call 328
new 328

proc method
module Kernel 42, 384

Process 112–114
block 114
creating 112, 297, 299, 382
exec 379
id (see also $$) 303
priority 395, 396
Ruby subprocess 113, 114,

297, 299
setting name 196
termination 113, 128, 376,

395, 397
times 351

Process class
times 351

Process module 394
egid 394
egid= 394
euid 395
euid= 395
exit! 395
fork 395
getpgid 395
getpgrp 395
getpriority 395
gid 395
gid= 395
kill 395
pid 396
ppid 396
setpgid 396
setpgrp 396
setpriority 396
setsid 396
times 396
uid 396
uid= 397
wait 397
wait2 397
waitpid 397
waitpid2 397

Profiler 120, 414
Program see Process
Protected see Access control
protected method

class Module 317
protected_instance_

methods

method
class Module 314

protected_methods method
class Object 326

Protocol class 439
prune method

module Find 407

PStore class 414
[] 415
[]= 415
abort 415
commit 415
new 415
path 415
root? 416
roots 416
transaction 416

Public see Access control
public method

class Module 317
public_class_method

method
class Module 314

public_instance_methods

method
class Module 314

public_methods method
class Object 326

Publish/subscribe 424
push method

class Array 262
putbinaryfile method

class Net::FTP 441
putc method

class IO 304
module Kernel 384

puts method
class IO 304
module Kernel 384

puttextfile method
class Net::FTP 441

pwd method
class Dir 271

Q
quiet method

class GetoptLong 411
quiet= method

class GetoptLong 411
quiet? method

class GetoptLong 411
quote method

class Regexp 331
Quoting

characters in regexp 54, 331
URLs and HTML 131

R
-r library (Ruby option)

127
raise method

class Thread 356
module Kernel 87, 213, 384

rand method
module Kernel 385

INDEX 503

Range
as condition 52, 74, 77, 201
as interval 53
literal 51, 185
as sequence 51

Range class 185, 329
=== 330
begin 330
each 330
end 330
exclude_end? 330
first 330
last 330
new 329

rassoc method
class Array 262

rbconfig.rb see Config
module

rdev method
class File::Stat 284

rdtool 181, 465–470
rd2 command 469

read method
class Dir 272
class IO 304

readable? method
class File::Stat 284
module FileTest 373

readable_real? method
class File::Stat 284
module FileTest 373

readchar method
class IO 304

readline method
class IO 304
module Kernel 195, 385

readlines method
class IO 299, 304
module Kernel 385

readlink method
class File 278

ready method
class Net::SMTP 448

real method
class Complex 401

Receiver 6, 63, 207, 217
Record separator see $/
recv method

class BasicSocket 429
recvfrom method

class Socket 438
class TCPSocket 431
class UDPSocket 433
class UNIXSocket 434

redo 80, 204
Reference

to object 29
weak 419

Reflection 235–243

callbacks 242
Regexp class 60, 331

== 332
=== 332
=~ 332
~ 332
casefold? 332
compile 331
escape 331
kcode 332
last_match 331
match 53, 60, 332
new 331
quote 331
source 332

Regular expression 53–60,
187–190

as condition 202
extensions 189
greedy 56
literal 53, 187
nested 189
object-oriented 59
options 187, 190, 331
pattern match variables 194
substitution 57, 340

rehash method
class Hash 186, 293

reject method
class Hash 294
module Enumerable 370

reject! method
class Array 262
class Hash 294

remainder method
class Numeric 320

Remote Procedure Call see
Distributed Ruby

remove_const method
class Module 317

remove_method method
class Module 318

rename method
class File 278

reopen method
class IO 304

replace method
class Array 262
class Hash 294
class String 341

require method 93, 96
loading extensions 156
module Kernel 129, 196,

385
rescue 85, 214
Reserved words 191
respond_to? method

class Object 236, 326
restore method

module Marshal 392
resume method

class Net::FTP 442
resume= method

class Net::FTP 442
retrbinary method

class Net::FTP 442
retrlines method

class Net::FTP 442
retry

in exceptions 86, 88, 214
in loops 81, 204

return see Method, return
value

return_code method
class Net::FTP 442

reverse method
class Array 262
class String 341

reverse! method
class Array 262
class String 341

reverse_each method
class Array 263

rewind method
class Dir 272
class IO 305

rfc1123_date method
class CGI 454

.rhtml (eruby) 136
rinda see Distributed Ruby
rindex method

class Array 263
class String 341

rjust method
class String 341

rm_f method
class File 408

rmdir method
class Dir 271

RMI see Distributed Ruby
root? method

class PStore 416
roots method

class PStore 416
round method

class Float 288
rtags 476
Ruby

bug reporting 480
distributed 245–246
download 480
installing xxvi, 164
ports to Windows 149
versions xxvi
Web sites xxviii, 479

Ruby mode (emacs) 117
ruby-bugs 480
ruby.exe and rubyw.exe 149

504 INDEX

RUBY_PLATFORM constant 197
RUBY_RELEASE_DATE constant

197
RUBY_VERSION constant 197
RUBYLIB 129, 234
RUBYLIB_PREFIX 129
RUBYOPT 129, 234
RUBYPATH 127, 129
RUBYSHELL 129
run method

class Thread 356
Runtime Type Information

(RTTI) see Reflection
Rvalue 69

S
-S (Ruby option) 127
-s (Ruby option) 127
Safe level 231–233

in extensions 175
list of constraints 234f
setting using -T 127
and tainting 232

safe_level method
class Thread 357

safe_unlink method
class File 408

Sandbox see Safe level
scan method

class String 49, 50, 342
module Kernel 385

Scheduler, thread 108
Schneiker, Conrad 64n
Schwartz, Randal 371
Schwartzian transform 371
Scope of variables 192
Search path 129, 164
sec method

class Time 362
seek method

class Dir 272
class IO 305

Seki, Masatoshi 245
select method

class IO 299
module Enumerable 370
module Kernel 385

self variable
in class definition 224

Semaphore see Thread,
synchronization

Send message 6, 19
send method

class BasicSocket 429
class Object 326
class UDPSocket 433

sendmail method
class Net::SMTP 448

Sequence see Range

Serialization see Marshal
Server commands method

class Net::FTP 440
Session see CGI programming,

session
Session leader 396
Set operations see Array class
set_backtrace method

class Exception 273
set_options method

class GetoptLong 411
set_trace_func method

module Kernel 242, 266,
386

setgid, setuid 232
setgid? method

class File::Stat 284
module FileTest 374

setpgid method
module Process 396

setpgrp method
module Process 396

setpriority method
module Process 396

setsid method
module Process 396

setsockopt method
class BasicSocket 429

Setter method see Method,
setter

setuid? method
class File::Stat 284
module FileTest 374

sg method
class Date 405

Shallow copy 322
Shebang (#!) xxviii
SHELL 129
Shell glob see File, expanding

names
shift method

class Array 263
class Hash 294

shutdown method
class BasicSocket 430

SIGALRM 386
SIGCLD 113
Signal

sending 395
see also trap method

signal method
class ConditionVariable

418
sin method

module Math 393, 401
Sinatra, Frank 19
Single inheritance 21
Single-quoted string 47, 184
Singleton

class 218
method 205

Singleton pattern 26, 426
singleton_method_added

method
module Kernel 242, 386

singleton_methods method
class Object 326

size method
class Array 263
class Bignum 266
class File::Stat 284
class File 278
class Fixnum 287
class Hash 294
class MatchData 308
class Net::POPMail 447
class String 342
class Struct 350
module FileTest 374

size? method
class File::Stat 285
module FileTest 374

sleep method
module Kernel 386

slice method
class Array 263
class String 342

slice! method
class Array 263
class String 342

Smalltalk
inject method 39

SMTP see Network protocols,
SMTP

Socket see Network protocols
Socket class 435

accept 438
bind 438
connect 438
for_fd 436
getaddrinfo 436
gethostbyaddr 436
gethostbyname 437
gethostname 437
getnameinfo 437
getservbyname 437
listen 438
new 437
open 437
pair 437
recvfrom 438
socketpair 437

socket? method
class File::Stat 285
module FileTest 374

socketpair method
class Socket 437

SOCKS see Network protocols

INDEX 505

SOCKS_SERVER 440
SOCKSSocket class 431

close 431
new 431
open 431

sort method
class Array 264
class Hash 294
module Enumerable 371
Schwartzian transform 371

sort! method
class Array 264

Source code layout 181
source method

class Regexp 332
Spaceship see <=>
split method

class File 278
class String 48, 343
module Kernel 126, 386

sprintf method
field types 388
flag characters 388
module Kernel 387

sqrt method
module Math 393, 401

squeeze method
class String 343

squeeze! method
class String 343

srand method
module Kernel 387

Stack
execution see caller

method
frame 477
operations see Array class
unwinding 86, 89, 214

start method
class Net::APOP 447
class Net::HTTP 444
class Net::POP 446
class Net::SMTP 448, 449
class Thread 354
module GC 375

stat method
class File 278
class IO 305

State pattern 423
Statement modifier

if/unless 75, 202
while/until 77, 204

Static linking 167
status method

class Thread 357
STDERR constant 197
STDIN constant 197
STDOUT constant 197
step method

class Date 405
class Integer 296

Stephenson, Neal 125n
sticky? method

class File::Stat 285
module FileTest 374

stop method
class Thread 354

stop? method
class Thread 357

storbinary method
class Net::FTP 442

store method
class Hash 294

storlines method
class Net::FTP 442

strftime method
class Time 362

String
#{. . . } 47
%... delimiters 182
control characters \n etc.

185
conversion for output 101,

384
here document 47, 184
literal 47, 184

concatenation 184
String class 47, 184, 333

% 333
* 333
+ 333
<=> 334
<< 334
== 334
=== 334
=~ 334
[] 335
[]= 335
~ 336
capitalize 336
capitalize! 336
center 336
chomp 336
chomp! 336
chop 337
chop! 337
concat 337
count 337
crypt 337
delete 337
delete! 337
downcase 338
downcase! 338
dump 338
each 338
each_byte 338
each_line 338
empty? 338

gsub 58, 339
gsub! 339
hash 339
hex 339
include? 340
index 340
intern 340
length 340
ljust 340
new 333
next 341
next! 341
oct 341
replace 341
reverse 341
reverse! 341
rindex 341
rjust 341
scan 49, 50, 342
size 342
slice 342
slice! 342
split 48, 343
squeeze 343
squeeze! 343
strip 344
strip! 344
sub 58, 344
sub! 344
succ 344
succ! 345
sum 345
swapcase 345
swapcase! 345
to_f 345
to_i 345
to_s 345
to_str 345
tr 345
tr! 346
tr_s 346
tr_s! 346
unpack 346
upcase 346
upcase! 346
upto 348

String method
module Kernel 376

string method
class MatchData 308

strip method
class String 344

strip! method
class String 344

Struct class 348
== 349
[] 349
[]= 349
each 350

506 INDEX

length 350
members 349, 350
new 348
size 350
to_a 350
values 350

struct sockaddr 428
Struct::Tms class 351
sub method

class String 58, 344
module Kernel 387

sub! method
class String 344
module Kernel 387

Subclass 19
Subprocess see Process
Subroutine see Method
Substitution see Regular

expression
succ method

class Date 405
class Integer 296
class String 344
for generating sequences 52

succ! method
class String 345

Suketa, Masaki 150
sum method

class String 345
super 208
Superclass 19, 217, 237

see also Module, mixin
superclass method

class Class 237, 268
Surprise

principle of least xxiv
swapcase method

class String 345
swapcase! method

class String 345
Symbol

literal 186
Symbol class 22, 198, 340, 351

id2name 352
inspect 352
to_i 352
to_s 352

symlink method
class File 278

symlink? method
class File::Stat 285
module FileTest 374

sync method
class IO 305

sync= method
class IO 305

Synchronization see Thread,
synchronization

synchronize method

class Mutex 417
syscall.h 387
syscall method

module Kernel 387
syscopy method

class File 408
sysread method

class IO 306
system method

module Kernel 112, 389
syswrite method

class IO 306

T
-T[level] (Ruby option) 127
Tag file 476
taint method

class Object 327
Tainted objects 232, 327
tainted? method

class Object 327
tan method

module Math 393, 401
Tcl/Tk see GUI programming
TCP see Network protocols
TCPServer class 432

accept 432
new 432
open 432

TCPSocket class 430
gethostbyname 430
new 431
open 431
recvfrom 431

Technical support 479
tell method

class Dir 272
class IO 306

Telnet see Network protocols,
telnet

telnetmode method
class Net::Telnet 451

telnetmode= method
class Net::Telnet 451

Tempfile class 416
close 417
new 416
open 417
path 417

terminate method
class GetoptLong 411

terminated? method
class GetoptLong 412

Ternary operator 75, 202
test method

module Kernel 389
Thread 105–111

creating 105
exception 107

group 358
scheduling 108
synchronization 109–111,

417, 418
variable 107
variable scope 106

Thread class 352
[] 355
[]= 355
abort_on_exception 107,

352, 355
abort_on_exception=

352, 355
alive? 355
critical 353
critical= 109, 353
current 353
exit 353, 355
fork 353
join 106, 355
key? 356
kill 353, 356
list 353
main 354
new 354
pass 354
priority 356
priority= 356
raise 356
run 356
safe_level 357
start 354
status 357
stop 354
stop? 357
value 357
wakeup 357

ThreadGroup class 358
add 358
list 358
new 358

throw method
module Kernel 89, 215, 389

Time class 359
+ 360
– 360
<=> 360
asctime 361
at 359
ctime 361
day 361
gm 359
gmt? 361
gmtime 361
hour 361
isdst 361
local 359
localtime 361
mday 362

INDEX 507

min 362
mktime 360
mon 362
month 362
new 360
now 360
sec 362
strftime 362
to_a 362
to_f 362
to_i 363
to_s 363
tv_sec 363
tv_usec 363
usec 364
utc 360, 364
utc? 364
wday 364
yday 364
year 364
zone 364

Timeout library 419
times method

class Integer 296
class Process 351
module Process 396

Tk see GUI programming
TMPDIR 416
to_a method

class Array 264
class Hash 294
class MatchData 308
class NilClass 319
class Object 327
class Struct 350
class Time 362
module Enumerable 371

to_ary method
class Array 264

to_f method
class Bignum 266
class Complex 401
class Fixnum 287
class Float 288
class String 345
class Time 362

to_i method
class Bignum 266
class Complex 401
class Fixnum 287
class Float 288
class IO 306
class NilClass 319
class String 345
class Symbol 352
class Time 363

to_io method
class IO 306

to_proc method

class Method 309
to_r method

class Complex 401
to_s method

class Array 264
class Bignum 266
class Complex 401
class Date 406
class Fixnum 287
class Float 289
class Hash 295
class MatchData 308
class NilClass 319
class Object 18, 327
class String 345
class Symbol 352
class Time 363
and print 101, 384

to_str method
class String 345

today method
class Date 404

top method
class Net::POPMail 447

Top-level environment 228
TOPLEVEL_BINDING constant

197
tr method

class String 345
tr! method

class String 346
tr_s method

class String 346
tr_s! method

class String 346
trace_var method

module Kernel 389
Tracing 242
transaction method

class PStore 416
Transcendental functions 392
Transparent language xxiv, 39,

45
trap method

module Kernel 113, 389
Trigonometric functions 392
Troubleshooting 117
TRUE constant 197
true constant 72, 197
TrueClass class 365

& 365
^ 365
| 365

truncate method
class File 278, 281

try_lock method
class Mutex 418

tty? method
class IO 306

Tuning see Performance
tv_sec method

class Time 363
tv_usec method

class Time 363
Typographic conventions xxx

U
UDP see Network protocols
UDPSocket class 432

bind 433
connect 433
new 433
open 433
recvfrom 433
send 433

uid method
class File::Stat 285
module Process 396

uid= method
module Process 397

uidl method
class Net::POPMail 447

umask method
class File 279

Unary minus, unary plus 319
undef_method method

class Module 318
undefine_finalizer method

module ObjectSpace 394
unescape method

class CGI 454
unescapeElement method

class CGI 454
unescapeHTML method

class CGI 454
ungetc method

class IO 306
Uniform Access Principle 23
uniq method

class Array 264
uniq! method

class Array 265
UNIXServer class 435

accept 435
new 435
open 435

UNIXSocket class 434
addr 434
new 434
open 434
path 434
peeraddr 434
recvfrom 434

unless see if expression
unlink method

class Dir 271
class File 279

unlock method

508 INDEX

class Mutex 418
unpack method

class String 346
unshift method

class Array 265
untaint method

class Object 327
until see while loop
untrace_var method

module Kernel 391
upcase method

class String 346
upcase! method

class String 346
update

Observable callback 424
update method

class CGI::Session 458
class Hash 295

upto method
class Date 406
class Integer 296
class String 348

URI 443
usec method

class Time 364
Usenet 480
UTC 359
utc method

class Time 360, 364
utc? method

class Time 364
utime method

class File 279

V
-v, --verbose (Ruby option)

127, 196
value method

class Thread 357
value? method

class Hash 295
values method

class Hash 295
class Struct 350

Variable
class 24
in extension 171, 175
instance 6, 18, 94
vs. method name 191
naming 9, 190
predefined 194
as reference 29, 192
scope 82, 106, 120, 192
weak reference 419

Variables
environment see

Environment variables
pre-defined 194

predefined
English names 194,

406
--version (Ruby option) 127
Versions of Ruby xxvi
vi and vim 117

tag file 476
Visitor pattern 421

W
-w (Ruby option) 127, 196
wait method

class ConditionVariable
418

module Process 397
wait2 method

module Process 397
waitfor method

class Net::Telnet 451
waitpid method

module Process 397
waitpid2 method

module Process 397
wakeup method

class Thread 357
Walk directory tree 407
Warnings

ARGV[0] is not $0 128
be careful with tainted data

231
C functions must return

VALUE 156
garbage collect large images

147
strings aren’t numbers 46,

119
wday method

class Date 404
class Time 364

Weak reference 419
WeakRef class 419

new 420
weakref_alive? 420

weakref_alive? method
class WeakRef 420

Web see CGI programming
Web server

trivial 432
see also Apache

Web sites for Ruby xxviii, 479
welcome method

class Net::FTP 442
while loop 77, 203

as modifier 77, 204
Widget see GUI programming
Win32API class 150, 461

Call 462
call 462
new 462

WIN32OLE class 150, 459
[] 460
[]= 460
connect 459
const_load 459
each 460
invoke 460
new 459

WIN32OLE_EVENT class 460
WIN32OLE_EVENT class

message_loop 461
new 461
on_event 461

Windows see Microsoft
Windows, GUI
programming

Words
array of 9, 186

Working directory 271
Wrap see Module, wrap
writable? method

class File::Stat 285
module FileTest 374

writable_real? method
class File::Stat 285
module FileTest 374

write method
class IO 306
class Net::Telnet 451

X
/x regexp option 187
-x [directory] (Ruby

option) 127
-X directory (Ruby option)

127
xmp 476

Y
-y, --yydebug (Ruby option)

127
yday method

class Date 404
class Time 364

year method
class Date 404
class Time 364

yield 37, 213
arguments 13, 38

Z
zero? method

class File::Stat 285
class Numeric 320
module FileTest 374

zone method
class Time 364

	Foreword
	Preface
	Roadmap
	Part I---Facets of Ruby
	Ruby.new
	Ruby Is an Object-Oriented Language
	Some Basic Ruby
	Arrays and Hashes
	Control Structures
	Regular Expressions
	Blocks and Iterators
	Reading and 'Riting
	Onward and Upward

	Classes, Objects, and Variables
	Inheritance and Messages
	Objects and Attributes
	Class Variables and Class Methods
	Access Control
	Variables

	Containers, Blocks, and Iterators
	Containers
	Blocks and Iterators

	Standard Types
	Numbers
	Strings
	Ranges
	Regular Expressions

	More About Methods
	Defining a Method
	Calling a Method

	Expressions
	Operator Expressions
	Miscellaneous Expressions
	Assignment
	Conditional Execution
	Case Expressions
	Loops
	Variable Scope and Loops

	Exceptions, Catch, and Throw
	The Exception Class
	Handling Exceptions
	Raising Exceptions
	Catch and Throw

	Modules
	Namespaces
	Mixins
	Iterators and the Enumerable Module
	Including Other Files

	Basic Input and Output
	What Is an IO Object?
	Opening and Closing Files
	Reading and Writing Files
	Talking to Networks

	Threads and Processes
	Multithreading
	Controlling the Thread Scheduler
	Mutual Exclusion
	Running Multiple Processes

	When Trouble Strikes
	Ruby Debugger
	Interactive Ruby
	But It Doesn't Work!
	But It's Too Slow!

	Part II---Ruby in Its Setting
	Ruby and Its World
	Command-Line Arguments
	Program Termination
	Environment Variables
	Where Ruby Finds Its Modules
	Build Environment

	Ruby and the Web
	Writing CGI Scripts
	Embedding Ruby in HTML
	Improving Performance

	Ruby Tk
	Simple Tk Application
	Widgets
	Binding Events
	Canvas
	Scrolling
	Translating from Perl/Tk Documentation

	Ruby and Microsoft Windows
	Ruby Ports
	Running Ruby Under Windows
	Win32API
	Windows Automation

	Extending Ruby
	Ruby Objects in C
	Writing Ruby in C
	Sharing Data Between Ruby and C
	Memory Allocation
	Creating an Extension
	Embedding a Ruby Interpreter
	Bridging Ruby to Other Languages
	Ruby C Language API

	Part III---Ruby Crystallized
	The Ruby Language
	Source Layout
	The Basic Types
	Names
	Variables and Constants

	Predefined Variables
	Expressions

	Boolean Expressions
	if and unless Expressions
	case Expressions
	Loop Constructs
	Method Definition
	Invoking a Method
	Aliasing
	Class Definition
	Module Definitions
	Access Control
	Blocks, Closures, and Proc Objects
	Exceptions
	Catch and Throw

	Classes and Objects
	How Classes and Objects Interact
	Class and Module Definitions
	Top-Level Execution Environment
	Inheritance and Visibility
	Freezing Objects

	Locking Ruby in the Safe
	Safe Levels
	Tainted Objects

	Reflection, ObjectSpace, and Distributed Ruby
	Looking at Objects
	Looking at Classes
	Calling Methods Dynamically
	System Hooks
	Tracing Your Program's Execution
	Marshaling and Distributed Ruby
	Compile Time? Runtime? Anytime!

	Part IV---Ruby Library Reference
	Built-in Classes
	Alphabetical Listing

	Array
	Bignum
	Binding
	Class
	Continuation
	Dir
	Exception
	FalseClass
	File
	File::Stat
	Fixnum
	Float
	Hash
	Integer
	IO
	MatchData
	Method
	Module
	NilClass
	Numeric
	Object
	Proc
	Range
	Regexp
	String
	Struct
	Struct::Tms
	Symbol
	Thread
	ThreadGroup
	Time
	TrueClass
	Built-in Modules
	Alphabetical Listing

	Comparable
	Enumerable
	Errno
	FileTest
	GC
	Kernel
	Marshal
	Math
	ObjectSpace
	Process
	Standard Library
	Complex
	Date
	English
	Find
	File
	GetoptLong
	mkmf
	ParseDate
	profile
	PStore
	Tempfile
	Mutex
	ConditionVariable
	timeout
	WeakRef
	Object-Oriented Design Libraries
	visitor
	delegate
	observer
	singleton
	Network and Web Libraries
	Socket-Level Access

	BasicSocket
	IPSocket
	TCPSocket
	SOCKSSocket
	TCPServer
	UDPSocket
	UNIXSocket
	UNIXServer
	Socket
	Higher-Level Access

	Net::FTP
	Net::HTTP
	Net::HTTPResponse
	Net::POP
	Net::APOP
	Net::POPMail
	Net::SMTP
	Net::Telnet
	CGI Development

	CGI
	CGI::Session
	Microsoft Windows Support
	WIN32OLE
	WIN32OLE_EVENT
	Win32API

	Part V---Appendices
	Embedded Documentation
	Inline Formatting
	Cross References
	Method Names
	Including Other Files
	Using rdtool
	Mandatory Disclaimer

	Interactive Ruby Shell
	Command Line
	Initialization File
	Commands
	Restrictions
	rtags, xmp, and the Frame Class

	Support
	Web Sites
	Download Sites
	Usenet Newsgroup
	Mailing Lists
	Bug Reporting

	Bibliography
	Index

